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Chapter 1
INTRODUCTION

In this Chapter the concepts of coherent control and disorder
are briefly introduced. We illustrate how these concepts are
related to the work described in this Thesis. Finally, an out-
line of the Thesis is given.



CHAPTER 1. INTRODUCTION

1.1 Coherent control

Coherent control is the control of a system by light, making use of a
coherent process. In a coherent process, there is a well defined phase
relation between the input and output. When multiple pathways exist,
the efficiency of the process is determined by the relative phase of the
pathways. If all the pathways are in phase, the process is enhanced.

The simplest form of coherent control uses just two laser beams!,
one at frequency wy and one at 3wy. An atomic or molecular transition
can be excited via two pathways, by absorbing 3 photons from the first
laser and by absorbing one photon from the second laser. The transi-
tion can be excited selectively by choosing the relative phase between
the laser beams. If the lasers are in phase, the transition is excited, and
with the lasers out of phase, the transition is not excited. For reasons
of symmetry, this scheme does not work for a laser at 2wy, as this laser
can't excite to the same state as the laser at wy.

Larger molecules have a densely packed vibrational manifold. To
cover all these vibrational states, light at many frequencies is required.
For the control of such molecules, pulsed lasers with a large bandwidth
are often used. The relative phases of the frequencies are set using a
pulse shaper. The inner workings of a pulse shaper are described in
Chapter 2. Here, we will focus on the concept of a shaped pulse.

A short laser pulse has a large spectral bandwidth. Initially the
relative phases of the frequency components are all zero, producing
the shortest possible pulse, the transform-limited (TL) pulse (Fig-
ure 1.1 left). The frequencies in the laser spectrum all arrive at the
same time in a TL pulse, similar to striking all the keys on a piano
simultaneously. A straightforward modification to the pulse shape
is analogous to the musical scale sweep, in which the instanteneous
frequency changes linearly with time (Figure 1.1 center). A pulse with
this shape is called a chirped pulse.

Chirped pulses play an important role in this thesis. Theory of chirp
scans is developed in Chapter 3 where we derive how resonant proper-
ties of samples can be extracted by measuring a non-linear response
with pulses that have a range of different chirps. Such scans of the
chirp are performed in the experiments of Chapters 5 and 6. Finally,
in Chapter 7 a non-linearly chirped pulse is found to be optimal in the
control of a dye in solution.

Many systems can be studied by performing open-loop scans
with simple pulse shapes, but some control problems require a more
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Figure 1.1: Pulse shaping is the optical analog of composing music. The avail-
able 'notes' are the frequency components in the spectrum of the laser. These
components can be arbitrarily spread in time by adjusting the settings on the
pulse shaper. One of the simplest shaped pulses is a chirped pulse in which
the instantaneous frequency is swept in time.

sophisticated pulse shape. An example of such a complex pulse is
the optical melody in Figure 1.1 on the right. In this pulse shape,
the spectral phase is a complicated function of the laser frequency.
For most problems that require such a complex pulse shape, the
solution is not known in advance. Finding the solution is a difficult
task that requires a trail-and-error approach. This approach is often
implemented in a closed feedback loop, in which a learning algorithm
iteratively improves the pulse shape?3. The details of this approach
can be found in Chapter 2.

1.2 Disorder

Any material is built-up from atoms. The relative positions of the atoms
determine the structure of the material. When the atoms are neatly
stacked in rows, columns and layers, a crystal structure is formed.
Many properties of a material are caused by such an arrangement, for
example the formation of electron bands*, distinct spots in an X-ray
diffraction pattern” or a polarization dependent refractive index for
light®.

Crystals can also be made by arranging larger building blocks, such
as large molecules, spheres or even holes, in an ordered structure.
These crystals are sometimes referred to as meta-materials, because
much larger building blocks are treated like atoms. The size of the
building blocks should be matched to the physics that one wishes
to influence with the material. Electrons and X-ray radiation with a
short wavelength can interact with atoms, while visible light has a

9
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Figure 1.2: The disordered samples that are described in this thesis. From left
to right, a random resistor/capacitor network, a film of randomly positioned
gold islands, a thick gold film with square holes on a lattice with disorder and
a dye molecule in solution that has constantly changing energy levels due to
interactions with the solvent.

wavelength much larger than an atom and therefore does not 'feel' in-
dividual atoms. Thus, a crystal for visible light requires larger building
blocks and can for example be formed with small glass spheres with a
size on the order of the wavelength of the light, a so-called opal.

Disorder is introduced when a perfect crystal structure is disturbed.
The structure can be disturbed by small random changes in the posi-
tions, orientations or sizes of the building blocks. This disorder weak-
ens or even eliminates the effects of the crystal structure. In the ex-
treme case, disorder can also introduce new effects such as Anderson
localization®. This effect causes electrons or photons to become local-
ized in loops that keep an electron or photon trapped by scattering.

As disorder is caused by random changes to the large number of
atoms in a crystal, the crystal can be disturbed in countless different
ways. It would be very tedious to calculate the properties of a disor-
dered structure by including the exact positions of all the atoms. Luck-
ily, to capture the important physics the exact realization of the disor-
der is not relevant, only the average relative positions of the atoms are
required as input. These positions can be described with the structure
function or more commonly a correlation function that is its Fourier
transform’. An ensemble averaged correlation function that describes
a crystal structure takes the form:

Crn (71, 72) = (n(x1)n(22)), (1.1)

where the function n(x) is a delta-function whenever the position z is
the position of a building block of the material.
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We applied pulse shaping to a few different disordered systems (Fig-
ure 1.2): an electrical network of randomly placed resistors and capac-
itors, two types of gold nanostructures and to a laser dye in solution.
The presence of disorder is easily visible for the electrical network and
the two nanostructure samples. The network serves as a model system
for a film of small islands of gold randomly positioned on a glass slide
(Chapter 5). The islands are completely disordered, as the correlation
function decays within a distance the size of a single island. The dis-
order in the random gold islands makes to local field as a response to
light different at each position on the surface (Chapter 4). We can use
the difference is local response by tailoring the illuminating light to the
response at a specific position and selectively excite it.

The other nanostructure structure is a smooth gold film with very
small holes milled through the film. The holes were initially placed
in an ordered array, but we added random displacements to the posi-
tions of each individual hole. The resulting structures are similar to a
melting crystal (see Figure 6.2). The light transmission through a hole
array relies on the coupling between the holes. In an ordered array, the
coupling is very efficient for some specific wavelengths. We have in-
troduced disorder in the positions of the holes to disturb this coupling
and see how the light transmission is effected (Chapter 6).

In Chapter 7 we describe the study of a laser dye in solution. The
disorder in this sample is in the solvent surrounding the dye. At room-
temperature energy is present in the low-frequency modes of the sol-
vent molecules. This energy causes the molecules to vibrate. The vi-
brations surrounding the dye molecule cause the transition energy, re-
quired to excite the dye to its excited state, to vary with time. These
fluctuations of energy, or transition frequency, are often described with
a frequency-correlation function®.

The variation of the energy levels by the solvent, disturbs the co-
herence in the system required for coherent control. By repeating a
control experiment in different solvents we show that the amount in
which the coherence is lost can be varied and has direct consequences
for the ability to coherently control the dye®'°,

11
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Chapter 2
EXPERIMENTAL

This chapter is a collection of the technical details behind
the experiments described in the rest of this thesis. We will
follow a feedback loop that is often employed in coherent
control experiments and describe its components. The pulse
shaper including the laser system, the samples and methods
of fabrication, the measurement techniques and the details
of the used evolutionary algorithm are discussed.

13
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2.1 Open and closed loop coherent control

In coherent control there is a distinction between open-loop and
closed-loop control. In an open-loop experiment one or a set of pulse
shapes is tried to control a system and the results are interpreted by
the experimenter. In this way, one can quickly gain new insights into
a system. The disadvantage is that already something has to be know
about the system to be able to choose pulse shapes that will show
an effect. For many complex system this knowledge is not available,
leaving only the route of closed-loop control. In this method an
algorithm is used that iteratively improves the pulse shape to reach a
desired goal. While the closed-loop approach result in a considerable
degree of control with many systems, interpreting the optimal pulse
shape and deriving the mechanism of control are difficult.

A closed loop learning experiment begins at the algorithm, where
a set of random pulse shapes is generated (Figure 2.1). These pulse
shapes are tested one by one with the pulse shaper. Then an experi-
ment is performed with each of the pulse shapes and a value that we
wish to optimize is measured. These values, called the fitness, are fed
back to the algorithm, which modifies the set of pulse shapes based on
their measured fitnesses. The loop continues until it converges on the
optimal pulse shape that maximizes the fitness.

In our closed-loop experiments we have used an advanced evolu-
tionary learning algorithm, the Covariance Matrix Adaptation (CMA) .
This algorithm is able to detect covariances in parameters that it uses,
which can greatly speed up an optimization. Another important aspect
is noise. The algorithm uses a measured fitness that has an uncertainty
associated with it. We found that when certain settings are used, the
CMA is very robust to this uncertainty’?. The detail of the algorithm
can be found in Section 2.5.

The main difference between open and closed-loop experiments is
the application of an algorithm. Therefore, we introduce the experi-
mental details of both types of experiments by following the loop of a
closed-loop optimization in the remainder of this chapter.

2.2 Laser system

We start following the loop in Figure 2.1 at the pulse shaper. Before
we can shape a pulse, we first have to generate one. A complicated
laser system generates short pulses with a high intensity. The center
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Figure 2.1: A closed-loop optimization incorporating a search algorithm that
adjusts the settings on a pulse shaper, based on feedback received from an ex-
periment. By iteratively going through the loop, the best settings (pulse shape)
are found that guide the experimental system to a desired state.

wavelength is tuned in a non-linear optical process.

The experiments in Chapter 5 and 7 were performed using the same
laser system. The fundamental laser source is a Titanium:Sapphire re-
generative amplifier (Clark-MXR, CPA-2001). This amplifier takes seed
pulses from a fiber laser that are frequency doubled and stretched by
chirping, before being feed into the amplification cavity. The ampli-
fier is pumped by a Q-switched and frequency doubled Nd:YAG laser.
The YAG is pumped by a flash-lamp that is immersed in cooling wa-
ter. The pumping by a flash-lamp imposes some limits on the system
regarding stability, but because the amplifier is driven into saturation,
pulse to pulse energy fluctuation of .5 % are typically achieved. After
amplification, the pulse is passed through a grating compressor, which
results in a 150 fs long pulse containing 850 uJ of energy. These pulses
are referred to as the 'fundamental’ laser pulses.

The fundamental pulses of 150 fs are still relatively long for ultrafast
spectroscopy and pulse shaping. A non-collinear optical parametric
amplifier (NOPA) is used to broaden the spectrum and thus shorten
the potential pulse length!®. The NOPA is pumped with a portion of
the fundamental light (250 pJ). Of this pump beam a small part is split
off and focussed into a sapphire plate. The high intensity focus in the

15
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sapphire produces a white light continuum, which is used as a seed to
start the amplification process.

The remainder of the fundamental in the NOPA is doubled and used
to pump the parametric amplification process. The white-light seed
and doubled fundamental are overlapped in a BBO crystal. By tun-
ing the delay between the two beams and the angle of the crystal, the
output frequency is determined. The tuning range of the NOPA starts
from 475 nm (limited by absorption of the idler in the BBO crystals)
to 1200 nm (limited by the extent of the white-light continuum). The
NOPA typically produces an output spectrum of 30 nm wide, which re-
sults in sub 20 fs pulses in the green to around 30 fs pulses when using
the red part of the spectrum. The parametric process is more efficient
in the green, but pulse energies of 10 to 20 pJ with a stability of 1% can
routinely be achieved across the tuning range.

In the experiment described in Chapter 5, only the NOPA beam was
used, whereas the experiment in Chapter 7 required a pump-probe con-
figuration. In this experiment, the short NOPA pulses were used as
the pump and the probe was a white-light continuum generated from
some of the remaining fundamental pulse.

In the experiment described in Chapter 6 we used a much simpler
laser system. Only a Titanium:Sapphire oscillator was used (Coherent
Micra). This laser generates short pulses (~20 fs) with a center wave-
length around 800 nm. The repetition frequency is 80 Mhz, but the
pulse energy is much lower than with the amplified system (average
power ~450 mW).

2.3 Pulse shaper

The generated femtosecond laser pulses are too short to be effectively
modulated in the time domain. However, the short pulse duration is as-
sociated with a broad spectrum, such that the pulses can be shaped to
high resolution in the frequency domain®. The individual frequency
components of a pulse are modulated with a specific amplitude and
phase to tailor the shape of the output pulse in the time domain. A
short input pulse can be shaped into a much longer pulse, only limited
by the resolution of the modulation in the frequency domain. The res-
olution is mainly determined by the number of pixels in the used spa-
tial light modulator (SLM). In our experiments, we used an SLM with
640 pixels across the spectrum, resulting in a shaping window of about
6 ps. This shaping window is much longer than the dephasing time of
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Figure 2.2: The SLM contains two masks that have the liquid crystals aligned
perpendicular to each other, both at 45° with the polarization of the incoming
light. This orientation allows the phase and amplitude of the transmitted light
to be controlled independently.

the processes we are interested in (molecular electronic dephasing and
plasmon dephasing are at most a few hundreds of femtoseconds long),
thus the SLM gives more than sufficient resolution.

The SLM contains two liquid crystal masks, called Master and
Slave, that allow independent control of the phase and amplitude of
the transmitted light (Figure 2.2). The input and output polarization
of the shaper should be parallel to the plane of the table, which is
ensured by placing linear polarizers on both sides of the mask. The
two masks have the liquid crystals aligned at +45° to the input polar-
ization. Because of this alignment, we can consider the transmission
through the masks as two independent channels (one for -45° and
one for +45°) with adjustable phase delay. The input field is divided
over the channels, such that each carries half the intensity. The two
channels are added together and interfere at the exit polarizer (see
equation (2.1)).

Ein )
Eor = 9 (eZd)l + ez¢2)

= 5 l(cos(d1) + cos(@z)) + i(sin(¢r) + sin(¢2))]

= E;,[cos <¢1;¢2> cos <¢12¢2> +

+isin (¢>1 —;%) cos (¢1;¢2)]

P11+ &2
= E;,cos <¢1 ; ¢2) eZ 2 2.1

=

17
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o, (x rad)

b, {m rad)

Figure 2.3: The transmission amplitude (green 0 — 1) and phase (magenta
0 — 2m) of the output electric field as a result of different settings for ¢; and ¢so.
The white rectangle indicates the area containing all possible combinations of
amplitude and phase that was used in the experiments.

The amplitude of the transmitted field is controlled via the difference
of the phases set on each mask and the relative phase is set by the sum
of the phases. To set a certain amplitude and phase on the shaper, the
two phase settings for the masks have to be chosen. Figure 2.3 shows
the accessible parameter space. In the experiments only a subset of
this space was used, indicated by the white rectangle.

2.3.1 Alignment

The shaper has to be carefully aligned to ensure that all frequency com-
ponents overlap at the sample position. The alignment starts by ad-
justing the entrance beam to be horizontal. The grating is than put in
a perfect vertical position by tuning the reflected beam (0-order) to be
horizontal as well. Now the grating is rotated around the normal to the
surface to make the grooves vertical. The height of all diffraction or-
ders should be the same. The spectrum is centered by placing a wire
in the middle of the shaper and looking at the output spectrum with a
fibre spectrometer. The grating angle is tuned until the dip caused by
the wire is in the center of the spectrum. The recombination at the sec-
ond grating has to be checked. When the response of the eye is uniform
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Fourier plane

curved mirror
folding mirror

grating

Figure 2.4: Folded arrangement of the 4-f pulse shaper. A liquid crystal mask
in the Fourier-plane is used to set the phase and amplitude of individual fre-
quency components.

across the spectrum this can be done directly. When using red to infra-
red wavelengths, the grating has to be imaged on a camera to get a
better view of the relative intensities in the beam. An increasing part of
the spectrum is blocked by sliding a card in the Fourier plane. The re-
combined beam should only dim and not change shape when the card
is inserted. Horizontal misalignment is corrected by moving the fold-
ing mirrors to put the gratings at the focal points of the curved mirrors,
while vertical misalignment is corrected by rotating the curved mirrors
around the normal. Finally, recombination at a position far from the
shaper is corrected by tuning the angles of the second grating. When
large corrections are made in this step, it is advisable to go back to the
previous step and do another iteration of adjustments.

2.3.2 Calibration

The calibration of the masks is done one by one. First, the master is cal-
ibrated while the effect of the slave is eliminated by writing 4095 (cor-
responding to 10 V) to all the pixels. At this high voltage the extraordi-
nary axis of the liquid crystals is rotated parallel to the laser beam so
that the light experiences no birefringence from the mask. The trans-
mitted light is detected on a spectrometer for spatial resolution of the
response of the SLM. By writing amplitude dips at different positions
on the masks and detecting where they end up on the spectrometer, the
mapping from spectrometer pixels to mask pixels is determined. The

19
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Figure 2.5: Measured transmitted intensity as function of pixel value (top) and
the unwrapped trace for calibration (bottom). The pixel value corresponds to
the voltage across the liquid crystals, 0-4095 = 0-10 V

voltage on the mask to be calibrated is scanned from O to 10 V and the
transmission is recorded. For each pixel this scan results in a trace as
shown in Figure 2.5. The shape of the trace is described by:

I = Iy cos? <¢(2V)> (.2)

Where ¢(V) is the phase retardation of the slow axis with respect to
the fast axis, the birefringence, as a function of voltage. The measured
trace has to be inverted to find this phase function. Because only a
range of 37 is required for full phase and amplitude shaping, we cal-
ibrate and use only the slower varying high voltage part of the liquid
crystal response. The trace is inverted and unwrapped as in the bottom
graph in Figure 2.5. Finally we fit the curve with a stretched exponen-
tial. The same procedure is follow to calibrate the Slave.

8
(V) = e <Z> 2.3)

This function describes the data very well. It contains only three fitting
parameters and it can be inverted analytically, so that a simple formula
gives the voltage setting required for a desired phase value.

In this calibration procedure only the birefringence (i.e. the phase
difference between the fast and the slow axis of the liquid crystal
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for each voltage setting) is calibrated. Variations in the path length
through the mask due to a varying thickness or refractive index do
not directly enter the calibration curves. These variations need to be
compensated by applying a background phase function on top of the
desired phase function. This background is determined by optimizing
second harmonic generation of the transmitted pulse, using the CMA
algorithm at the end of this chapter.

2.4 Experiments

Now that we are able to create shaped laser pulses, we continue the
loop with an experiment. The experiment requires a sample to study
and a method to see the effect of the shaped pulses on this sample
is needed. The sample is either placed on a microscope to look at it
directly or a probe beam is sent through the sample to measure its ab-
sorption as an effect of the shaped pulse.

2.4.1 Samples

Chapter 7 describes the study of a dye in solution. This dye was dis-
solved in its respective solvent and put into a cuvette. This cuvette was
placed at the crossing point of the pump and probe beams (see Sec-
tion 2.4.3).

The experiments in Chapters 5 and 6 concern gold nanostructures.
The preparation of these structures requires work in a clean-room envi-
ronment with nano-lithography techniques. These techniques are de-
scribed below.

Electron beam lithography

To create nanostructured metal films with the shapes and sizes
required, we used electron beam lithography (EBL). In this technique,
an electron beam is used to write the structure in a sensitive layer.
Charging of the substrate has to be prevented, as it increases the
focus size of the beam and reduces resolution. Therefore, we used
substrates coated with a conducting ITO layer to prevent the charging
and additionally allowing for easy characterization of the samples in a
scanning electron microscope after fabrication.

A bi-layer of PMMA was spin-coated on the substrate. In the area
exposed to the electron beam, the long polymer chains are broken up

21
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Sisisie

Figure 2.6: Schematic of the processing steps for electron-beam lithography.
First two layers of PMMA are spin-coated on the substrate (495 KDa and 950
KDa average molecular weight). The desired structure is written by an electron
beam, after which the exposed area is dissolved in a developer (MIBK). The
gold is deposited on the sample and the remaining PMMA is dissolved.

into shorter chains. These short chains are soluble in the developing
solution whereas long chains are not. In the developer, the exposed
areas are dissolved, leaving the bare substrate.

The metal that forms the nanostructures was subsequently evap-
orated on to the substrate. By using a bi-layer in which the top layer
consists of longer polymer chains, we prevent the nanostructures to
be attached to the metal layer on top. After deposition of the metal,
the residual PMMA was dissolved in a more aggressive solvent and the
top metal layer pealed off, leaving only the nanostructures on the sub-
strate.

Finally, the nanostructures were coated with quantum dots to be
able to visualize the local fields on the surface!®. This coating was
done by dipping the substrate into a dilute solution of quantum dots
in toluene and letting the solvent dry off.
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Figure 2.7: Designed random structure of gold islands.

Focussed lon-Beam Lithography

A focused ion-beam is similar to an electron beam. Gallium ions are
accelerated and focussed to a few nanometer diameter spot, which is
scanned across the sample. The impact of the gallium ion is destruc-
tive to the sample. Some material is sputtered away at the focus of the
beam.

Hole array samples were produced by milling the pattern into an
optically thick layer of gold (200 nm). The controller for the ion-beam
takes a stream-file that contains a list of positions and a dwell time for
each position. These stream-files were directly created by a MatLab
script to have full control over the milling order. A potential problem
with ion-beam milling is redeposition of material. To avoid this prob-
lem the holes were created starting from the center and spiralling out-
wards. At the border of the holes the dose was increased in order to
have a sharp definition of the edges.

2.4.2 Microscope

The experiment on the random gold islands was performed on a micro-
scope. The shaped pulses illuminated the sample from the top. Here a
lens with 3-axis adjustment was placed to position the beam and create
a weak focus. A zero-order half-wave plate in the laser beam was used
to control the polarization of the light. The angular position of this
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Figure 2.8: Hole array with disorder produced by Focussed Ion Beam Milling

plate was calibrated by placing a polarizer on the microscope table.
The angles of the wave-plate resulting in a polarization parallel to the
table-axis were determined. The fluorescence from the samples was
imaged through a 1.4 NA 100x objective. An objective with this high NA
allows for efficient collection of fluorescence by capturing a large solid
angle of emission. After the objective filters were placed that block the
transmitted laser light. Finally, an image of the fluorescence from the
sample was produced on a sensitive electron-multiplying camera (EM-
CCD). A problem with CCDs at low light levels is the read-out noise that
is added on top of the signal from each pixel. The EMCCD circumvents
this problem by first amplifying the counts in each pixels, before con-
verting the counts to a number. In this way the read-out noise relative
to the signal level is reduced V.

2.4.3 Pump-probe

The experiments studying the effects of solvation on the control of
a molecule, as described in Chapter 7, made use of a pump-probe
setup™. In this setup the sample was first excited with a shaped
pump pulse and at some time later the effect of the pump pulse was
probed by measuring the change in transmission with a white light
probe pulse. The probe light was generated by focussing a part of the
light from the CPA in a sapphire window resulting in a white light
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Figure 2.9: The effect of the pump pulse on the sample is measured by alter-
natingly measuring the transmission of the probe with the pump on and off.
The dynamics of the induced absorption are determined by scanning the dif-
ference in arrival time between the two pulses.

continuum. Before the white light was generated, the CPA pulses were
passed through an adjustable delay stage to be able to record the time
evolution of the signal.

The transmitted probe-pulses were measured by a spectrometer
with a home-built camera (DIABLO). This camera allows data acqui-
sition of spectra at the laser repetition rate to be able to separate the
spectra belonging to pump on and pump off (Figure 2.9).

2.5 Covariance Matrix Adaptation algorithm

The final component that closes the loop (Figure 2.1) is a search algo-
rithm that drives an optimization. The high resolution of the pulse
shaper results in a large amount of pulse shapes that can be synthe-
sized. Especially when a problem is not well understood, finding the
best pulse shape to solve it is a difficult task. We have used the Co-
variance Matrix Adaptation (CMA) algorithm to find the pulse shape
for these complex problems!!,

The CMA is an evolutionary search algorithm (Figure 2.10). Like
all such algorithms, it evolves a set of trial solutions (a generation) by
selectively reusing the best solutions of the previous generation (higher
fitness). The CMA starts each generation from a single parent that is
randomly mutated. How this mutation is performed is what defines
the CMA.

While running the loop, the CMA learns which direction in the
search space is more likely to yield a good solution. This direction is
derived by looking at the path of successful mutations and determin-
ing the covariance matrix between these mutations. The covariance
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Figure 2.10: In general an evolutionary algorithm iteratively improves the fit-
ness of the solution via selection and mutation. Specific algorithms differ in
how mutation and selection are implemented.

matrix is then used to modify the probability distribution of the trial
solutions (Figure 2.11).

Another important aspect of the CMA and evolutionary strategies
in general is control of the step size. When the step size is too large,
any learning is immediately lost. When the algorithm steps on a peak
in the landscape, subsequent steps will be too far away to find this
peak again and climb it. When the step size is too small, it will take
many generations to climb a slope in the landscape. In this case there
is learning, but it takes longer than necessary. In addition, due to the
small step size, saddle points and local optima in the landscape can
become traps for the algorithm.

The criteria for a too small and/or too large step size depend on
the fitness landscape and on where in the landscape the algorithm
is searching. Therefore, a good evolutionary strategy dynamically
changes the step size to be near optimal for every phase of the search
process. The CMA adapts the step size by calculating the length of the
search path it has taken. In the optimal case, the steps are on average
perpendicular (compare with a steepest descend method). When the
step size is too small, the steps will be more or less in line and the
path will be longer than a path for perpendicular steps. When the step
size is too large, consecutive steps will be in opposing directions to
compensate. In this case, the search path is shorter than the path with
perpendicular steps. By calculating the length of the search path, the
CMA is able to detect suboptimal step sizes and adjust accordingly.
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Figure 2.11: A 2-dimensional representation of how the CMA algorithm adapts
the probability distribution of the trial solutions based on the direction of pre-
vious successful guesses. The ellipses depict the shape of the probability dis-
tribution in the next generation.

One caveat with step size control is that there has to be some learn-
ing. When there is no learning, the algorithm performs a random walk.
The steps in this random walk are on average perpendicular and result
in a search path of the same length as the path with an optimal step
size. Thus, if the initial step size is chosen in a regime where there is
no learning, the algorithm is unable to adjust the step size to the opti-
mal regime. Therefore, some care has to be taken in setting the initial
step size. Intuition or previous knowledge on the fitness landscape and
signal-to-noise has to be used.
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Chapter 3

PHASE SHAPED
SECOND-HARMONIC
GENERATION

Second-harmonic generation (SHG) is one of the simplest
non-linear optical effects: an electromagnetic wave interacts
with a wave of the same frequency producing a wave at dou-
ble the frequency. SHG with shaped pulses can be applied
in many ways; the characterization of the pulses, compress-
ing the pulses and the determination of the properties of res-
onances of samples. In this Chapter, we develop theory of
non-resonant and resonant SHG with shaped pulses. The
theory for resonant SHG is used to compare two techniques
that are sensitive to resonances: the well known interfero-
metric autocorrelation and a newly developed chirp scan. We
find that the chirp scan has advantages over the autocorrela-
tion technique that give more information on the properties
of resonances.

Finally, we will look at the landscape of the SHG optimiza-
tion problem when the Taylor series is used as the basis set.
By visually changing the landscape into one with convex
contour lines, we construct a new basis set that will give a
faster and more robust convergence on the maximum of the
landscape.
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3.1 Introduction

The frequency of optical radiation is too fast to measure directly. A
measurement always yields an intensity, averaged over many cycles.
The phase information of the optical wave is lost. Phase shaping an
optical pulse does not change its total energy and therefore the average
intensity measured on a detector is independent of the applied phase.
The phase can be measured by interfering the pulse with a reference
pulse. This requires the setup to maintain the length of the path of the
signal and reference pulses to within a fraction of a wavelength, which
is difficult when the paths are separate (as required in a pulse shaping
experiment). Furthermore, to measure the absolute phase as a function
of frequency, the phase of the reference pulse needs to be known.

When a reference with known phase is unavailable, a non-linear ef-
fect has to be used in which the signal is referenced with itself. Second-
harmonic generation (SHG) is one of the simplest non-linear effects an
electromagnetic wave interacts with a wave of the same frequency pro-
ducing a wave at double the frequency. The Frequency Resolved Op-
tical Gating (FROG) technique uses SHG with two pulse replicas for a
range of delays between two pulses and spectrally resolves the gener-
ated SHG light'®. If this measurement is done with sufficient resolu-
tion, the spectral phase of the input pulse can be retrieved.

At the start of our experiments, we are not interested in the exact
shape of the spectral phase of the input pulse. We just need to correct
the phase with the pulse shaper to be constant across the spectrum.
For this purpose we use the property of SHG that it has the maximum
signal for a given input spectrum, when the phase of that spectrum is
constant over the spectrum. A flat spectral phase results in a (Fourier)
transform-limited (TL) pulse. If we find the phase mask on the pulse
shaper that produces the maximum SHG, we have found a pulse with
a flat spectral phase. We add this phase mask to all the masks used in
experiments and call it the background phase.

How easy it is to find the maximum SHG depends on the search
landscape. This landscape is the SHG intensity as a function of the
search parameters. In Section 3.4 we study how the landscape depends
on the basis function used in the search and use this knowledge to con-
struct a better basis set for the optimization of SHG™.
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In Chapter 5 we show how two-photon absorption in quantum dots can
be used to probe the local field intensity on a nanostructure. When the
two-photon absorption spectrum is sufficiently flat, the same mathe-
matics as for the SHG can be applied here. In Chapter 6 we describe
how the SHG from an array of holes in a metal film was studied. In
this study we distorted the input pulse with a known spectral phase
and measured how this distortion influenced the intensity of SHG. By
analysing the data from this measurement, the position and width of a
resonance on the structure was found. The theory behind this analysis
is developed in this Chapter.

3.2 Optimization of second harmonic generation

Before the pulse shaper can be used to synthesize tailored pulse
shapes, the background spectral phase of the laser pulse has to be
determined and corrected. Optimization of SHG of a shaped pulse
allows us to determine this phase up to an ambiguity that leads to a
linear term and an offset in the spectral phase. Although our pulses
are short (<30 fs), they are still several optical cycles long (>>10 cycles).
Therefore, the offset between the carrier and the envelope of the pulse
caused by the offset is not important. Similarly, a spectral phase that
is linear in the frequency just shifts the arrival of the pulse in time.
For practical purposes, finding a spectral phase that maximizes the
SHG is sufficient to correct for the background phase of the pulse. A
mathematical proof of the maximization follows below.

In addition to being applied to find the background spectral phase,
the SHG optimization experiment has proven useful as a test case in the
study of evolutionary algorithms!21%2°, Despite the mathematical sim-
plicity of the solution, the problem of optimizing SHG has been found
to be non-trivial?! and changing the parameters that an algorithm uses
in its search has large effects on the learning speed of the algorithm.
In Section 3.4 at the end of this chapter, we look into the optimization
landscape of SHG and present parameters that result in a landscape
that is easier to search through. The insights gained from these studies
have led to better initial parameters for our algorithm and have enabled
the optimization of more difficult problems (see Chapter 7).
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We will focus first on non-resonant SHG, which means that the non-
linear medium (e.g. a non-linear crystal) has no resonances near the
fundamental and SH frequency.In this case the instantaneous SH field
is directly proportional to the square of the input field,

E@(t) x E(t). (3.1)

To study the effect of the spectral phase on the SHG process, we trans-
form equation (3.1) into the frequency domain,

E®(w) x +OoE(w —W)E(W)dw'. (3.2)

— 00

The symmetry of the process is more apparent with the change of vari-
ables w’ = “£< which leads to

+oo . "
E(2)(w)oc%/ E(“’ 2“’ >E<w+2w )dw”. (3.3)

The fundamental field F(w) is a complex quantity. We can explicitly in-
troduce the spectral phase by splitting the fields into their amplitudes

and phases:
()
X

+oo o
E®@w) }/ ‘E(w w)
2) 2
(55)
" 1
’E <”+2“’ ) o 2/ Q" (34)

To maximize the SHG intensity at a certain w, the phase of the SHG due
to each frequency pair,

w—w" w+w

5 )+ & ), (3.5)

&

should be independent of " (see also Figure 3.1). Thus the differential
of 3.5 with respect to w” should yield zero,

_7(75 (w w) (b(w—&—w):O' (.6)
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Figure 3.1: The sum frequencies of different frequency pairs in the fundamen-
tal spectrum (same line style), contribute to the same frequency in the second-
harmonic spectrum. The second harmonic is maximized when all these contri-
butions have the same phase.

When the full SHG spectrum is maximized (for all w), equation (3.6)
can only be satisfied when the derivative of the spectral phase (¢'(w))
is a constant. Any spectral phase that consists of a constant and a
linear term satisfies this condition and maximizes the intensity of the
SHG.

3.3 Resonant second harmonic generation

We will focus further on the second harmonic generated in the en-
hanced field of a plasmon resonance. First, we calculate the effect of
the resonance on the SHG process. Then we use the result to simulate
the SHG from a set of shaped pulses. Within the set, a single parameter
that describes the pulse shape is scanned. Two different pulse shapes
are tried, a pulse pair with variable delay and a chirped pulse with vari-
able chirp. We discuss what details of the resonance can be extracted
from such scans.

The motion of an electron as a response to the electric field of im-
pinging light can have a resonant response. We describe this motion
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Figure 3.2: A schematic representation of a Michelson interferometer. An in-
terferometric autocorrelation is measured by mixing two pulse replicas in a
non-linear crystal. The intensity of the non-linear response is detected as a
function of the delay between the two pulse replicas. The width of the trace is
determined by the length of the input pulse.

by the coordinate, x, which obeys the following equation of motion:

i+ 2T + Q% + az? = %E(t). (3.7)

In this equation, 2 is the undamped resonance frequency, I is the
damping rate and a represents the strength of the non-linearity of the
potential. The non-linear term, ax?, can be considered a small per-
turbation on the linear equation. The equation can be solved by first
solving the linear part,

+oo
x(t) = / 2o(w)E(w) exp (iwt) dw (3.8)

e/m

02 — w2 + 2l (5.9)

xo(w) =
This solution is then inserted into equation 3.7 and it is solved again
with —ax(t)? as the driving term. In the following, it is assumed that
only the fundamental frequency is near the resonance frequency, €2,
and that the second harmonic is far from any resonance. In this case
xo(w) can be simply considered as an additional modulation on the
(shaped) spectrum of the input pulse, before the second harmonic field
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is generated:

+o0 +o0 4
Ispg o</ ’/ zo(w)E(w) exp (iwt) dw| dt. (3.10)

Equation 3.10 is used in the following section to simulate the SHG sig-
nal for different input pulse. The effect of a resonance on an autocor-
relation trace and on a chirp scan trace is calculated.

3.3.1 Interferometric autocorrelation

Autocorrelation is a technique to measure the length of an optical
pulse?. Two replicas of the pulse are created in a Michelson interfer-
ometer (Figure 3.2). The two pulses are overlapped inside a non-linear
crystal and the amount of generated SHG is measured on a detector,
while the delay between the replicas is scanned. The measured
SHG intensity peaks at zero delay and the pulse length of the initial
pulse is determined from the width of the measured peak. For the
measurement of the pulse length, a non-resonant (i.e. instantaneous)
non-linearity is required. If the response of the non-linear crystal is
not constant across the bandwidth of the pulse due to a resonance in
the material of the crystal, the measurement results in a longer pulse
length than that of the actual pulse. This effect can be used to charac-
terize resonances in materials by comparing the autocorrelation trace
with this material as the non-linear medium with a trace measured on
a non-resonant reference medium?3. The difference in the measured
pulse lengths is given by the lifetime of the resonance.

It was long believed that the autocorrelation technique is mostly
sensitive to the homogeneous line width of the resonance and not to
heterogeneous broadening?>?. It was argued that the homogeneous
and heterogeneous line width of the resonance could be determined
by comparing a linear extinction spectrum and the width of the res-
onance found with the autocorrelation?. These measurements were
also supported by simulations.

Unfortunately, these simulation mistakenly included the full
second-order response, both SHG and optical rectification (OR), in the
calculated signal®®. In the OR process, the —w part of the spectrum
interacts with the +w part, resulting in radiation with a low frequency.
However, detectors used in SHG experiments are not sensitive to this
low-frequency radiation and thus this signal is lost.
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Figure 3.3: Maps of frequency versus time for several pulses with increasing
group-delay dispersion (GDD increases from a to e). The GDD stretches a pulse
in time, such that the instantaneous frequency in the pulse changes linearly
with time. At zero GDD (c) all the frequencies arrive at the same time, resulting
in the shortest possible pulse.

In our simulations we have described the laser spectrum only in the +w
part and left it zero in the negative part, such that an interaction be-
tween a positive and negative w can not take place. In this description
we have implicitly taken the rotating wave approximation (RWA)?’.
We have formulated our simulation such that only the SHG re-
sponse is included in the signal and the OR is discarded. Thus, the
simulated signal is the same signal that is measured experimentally.

3.3.2 Chirp scans

In a chirp scan the group-delay dispersion (GDD) on a pulse is scanned.
GDD delays the blue side of the spectrum relative to the red side. The
intermediate frequencies arrive at times between these extremes, such
that the instantaneous frequency is a linear function of time (Figure
3.3). We will study the SHG response to a chirp scan and the influence
of a resonance on the shape of a curve measured in this way. We find
that this scan gives more insight into the resonance than an autocorre-
lation.

First, a practical advantage of a chirp scan over an autocorrelation
is the smooth second-order phase profile of a chirp. This profile can
be applied to a pulse with a pixelated pulse shaper without significant
distortion. To synthesize the pulse pair for an autocorrelation with a
pulse shaper a phase and amplitude mask with sharp features is re-
quired. A pulse shaper does not produce these features with a high
accuracy. Performing an accurate autocorrelation calls for additional
equipment, i.e. an interferometer, to be included in the setup that is
not necessary for a chirp scan.

Using the same approach as for the autocorrelation, we simulated
the SHG signal for a range of chirps on the pulse. We compare the
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Figure 3.4: Scans of autocorrelation (top) and chirp (bottom) on resonances
with lifetimes of 2, 1, 0.5, 0.25 and O (non-resonant) times the pulse length.
Longer lifetimes correspond to broader peaks. The chirp scans start from a
slightly narrower peak for the non-resonant case, but broaden much more
compared to the autocorrelation scans as the lifetime is increased.

traces to the envelope, i.e. with the interference removed, of autocor-
relation traces on the same resonance.

The results are shown in Figure 3.4, with the autocorrelations on
top and the chirp scans in the bottom Figure. The non-resonant case
corresponds to the narrowest peak in both Figures. As the lifetime of
the resonance is increased, all peaks broaden. The curves correspond-
ing to the chirp scan and autocorrelation are of similar width in the
non-resonant case. However, as the resonance lifetime increases the
chirp scan traces broaden more than the autocorrelation curves, which
shows that the chirp scan is more sensitive to the presence of a reso-
nance.

In the curves in Figure 3.4, the resonance is in the center of the
laser spectrum. When the resonance is not centered in the spectrum,
the shape of the chirp scans changes. This change is due to the phase
profile associated with the resonance. Figure 3.5 shows the amplitude
and phase for a resonant lineshape. The phase runs from 0 (follow-
ing the driving force) for excitation frequencies below the resonant
frequency to 7 (lagging half a cycle behind the driving force) for fre-
quencies above the resonance. When the laser spectrum is shifted to a
lower or higher frequency from the center of the resonance, the excita-
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Figure 3.5: A resonant lineshape and its associated phase. The chirp scan is
sensitive to the curvature in the phase, which can be exploited to determine
the position of the resonance relative to the spectrum of the excitation pulse.

tion field experiences more of the curvature in the phase on one side
than on the other side. The maximum of an autocorrelation trace is not
affected by a detuned excitation. The trace will only narrow slightly,
because the overlap between the resonance and the laser spectrum is
reduced also the effect of the resonance on the width of the trace is
reduced.

The curvature in the phase response of the resonance is similar to
the phase profile used in the chirp scan itself. There is a point in the
scan where this curvature is compensated by the chirp introduced in
the scan. The chirp scan will produce a maximum in the SHG at this
point instead of at zero GDD. For which GDD exactly the chirp scan
compensates the phase curvature depends on the width of the reso-
nance and how far off-resonant the excitation is. Figure 3.6 shows the
shift of the maximum for a number of widths for the resonance and
a range of detunings. For slightly off-resonant excitation, there is a
large shift of the maximum in the chirp-scan peak. In this situation,
the transform-limited pulse does not give the maximum SHG response.
This effect was first seen in the two-photon excitation of Rubidium?8.

In addition its sensitivity to the lifetime of the resonance, the chirp
scan technique also gives information on the position of the resonance
relative to laser spectrum.
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Figure 3.6: The shift off the maximum of a chirp scan as a function of detuning.
The resonances have lifetimes of 2 (maximum shift), 1, 0.5 and 0.25 times the
pulse length.

3.3.3 Homogeneous and Inhomogeneous line widths

Distinguishing the homogeneous and inhomogeneous broadening of
a resonant line width is the goal of many spectroscopic techniques?®.
The homogeneous line width is the width of a single oscillator in the
sample, which is inversely related to the lifetime of the oscillation. The
inhomogeneous broadening is the amount a resonant line is increased
due to the presence of oscillators with differing frequencies resulting
from inhomogeneities in the sample. With a measurement that can
separate these effects we can learn about the properties of the individ-
ual oscillators and how they are affected by their local environment.

To measure the purely homogeneous line width a non-linear
technique is required, in which the inhomogeneous broadening is
cancelled out. A non-linear technique in which a difference frequency
is generated, i.e. mathematically a frequency at —w interacts with a
frequency component at w, can be used to cancel this broadening®. In
Section 3.3.1 we mentioned that in the full second-order field there is
such a term. Including this term in the simulation of SHG led people
to believe that SHG could be used to determine the homogeneous line
width. Unfortunately, this term can not be measured with the same
detector as the SHG light and therefore the information it provides is
lost.
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Figure 3.7: Comparison of the peak broadening of an interferometric auto-
correlation (blue) and a chirp scan (red). For each technique the contour lines
that give rise to a broadening of 4%, 8%, 20% and 33% are indicated. The
gray lines show combinations of homogeneous and inhomogeneous broaden-
ing resulting in the same FWHM in the linear spectrum. These lines are plotted
on the the scale of a 21 fs long input pulse in comparison with the non-linear
measurements.

In the following we will do the simulation in accordance to what
is measured in the experiment and show that it is not possible to dis-
tinguish the two contributions to the width of the resonant line. Both
the autocorrelation and the chirp scan methods will be tried. We will
make a contour map of the width of the peak calculated for both tech-
niques for different combinations of homogeneous and heterogeneous
broadening, similar to the work of Vartanyan et al.?’.

We modify the spectral response of the resonance in equation 3.9
by including a distribution of center frequencies:

2o(w) = 1 Feo e/m expf(Q_QO)
0 AV | o Q2 —w? + 20wl A?

2
dQ, (3.11)

in which I' is the homogeneous line width, A is inhomogeneous width
and € is the center frequency of the distribution. We calculated the
autocorrelation and chirp scan traces for a range of combinations of I"
and A. In Figure 3.7 a contour plot of the width of these traces is shown.
The axis is this plot are the dimensionless parameters, lifetime x pulse
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length. Any point on a contour line will give the same width in the SHG
scan. It is not possible to determine which combination of I" and A led
to this width. There is no difference between the shapes of the con-
tours for the autocorrelation and the chirp scan. The only difference is
that, because the chirp scan is more sensitive to the resonance, a larger
increase in the width of the trace compared to the non-resonant width
is observed for the same resonant line shape.

It was also suggested that a combination of a second-order
measurement and a linear measurement could determine the homo-
geneous and inhomogeneous line width?. To check this suggestion,
we have included the line width that would be measured by a linear
technique in gray. The non-linear data are plotted for dimensionless
parameters that depend on the pulse length, while the linear data do
not depend on the pulse length. Therefore we have included the linear
data on a scale that corresponds to an experimentally reasonable
pulse length of 21 fs. The shapes of the linear and non-linear curves
are nearly identical. Combining two measurements to determine the
combination of I and A requires one to find the intersection between
a contour line of a linear measurement and a non-linear measurement,
i.e. two nearly parallel lines. Two nearly parallel lines with some
uncertainty on their positions will result in a large error on the position
of their intersection. Thus, the combined measurement will not give
an accurate measure of the line widths underlying the resonance.
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3.4 Shaping the SHG fitness landscape

In the previous sections we have only worked with a linear chirp on the
pulses. For the optimization of some physical systems the linear chirp
may be too limited. Non-linear chirps, in which the phase as a function
of frequency scales with a cubic or higher power, can of course also be
applied in phase shaping. In fact, according to the Taylor theorem,
any analytic spectral phase function can be expressed via a series of
constants, times the frequency raised to different powers.

M (w ®) (4
8() = oleo)+ T2 () + 6 (wo)

¢ (wo)

2! 3!

(3.12)

In this equation, the linear chirp is the ¢(?)(w) term. The two lower
order terms have no influence on the pulse shape for a pulse that is
relatively long compared to the center wavelength. The ¢")(w) term
changes the arrival time of the pulse and the phase offset, ¢(wy), de-
termines the offset between the field oscillations and the envelope of
the pulse. These two terms do not influence the intensity of SHG, as
was derived in Section 3.2.

In the optimization of a phase shaping experiment, the Taylor co-
efficients are often used as the parameters that are tuned to reach the
optimum. In this section we will study the landscape of the SHG op-
timization problem when this basis set is used. Furthermore, we will
present a modified basis set that results in a fitness landscape with im-
proved properties from the point of view of an optimization.

The fitness landscape is the intensity of non-resonant SHG as a
function of the parameters used in an optimization. When the Tay-
lor series is used as the parametrization, the Taylor coefficients are the
parameters. We will denote these parameters by ¢s, ¢3, ¢4. A fitness
landscape has as many dimensions as the number of parameters. We
will try to gain insight into the landscape by looking at 2-dimensional
projections of just one parameter versus another, while all other pa-
rameters are zero.

Figure 3.8 shows the 2-dimensional fitness landscapes for combi-
nations of parameters for phase functions with opposite parity (even
versus odd). The range (-1 to 1) of the parameter scan is chosen to cor-
respond to the points in the scan were the SHG intensity is half that of
the maximum. The landscapes in Figure 3.8 are all mirror-symmetric

(w—wp)?+——(w—wp)>+- -
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Figure 3.8: 2-dimensional maps of the SHG intensity for combinations of poly-
nomial phase orders with opposite parity. The maps are symmetric around the
optimum, such that this optimum can be found by one dimensional scans of
the parameters.

around the optimum. Exploiting this symmetry, the optimum can be
found by just two independent single parameter scans. For each scan
either a single, or two maxima are found. In the case of a single maxi-
mum, the value giving rise to this maximum also yields the global max-
imum. For the case of two maxima, the average of the two values giving
these maxima will yield the global maximum. However, a search algo-
rithm may not be aware of the the maxima and could be attracted to
just one of them, lengthening the search path. For such an algorithm,
a landscape with convex contour lines would give a better result.

Figure 3.9 shows similar fitness landscapes as Figure 3.8, but now
the two parameters are for phase functions with the same parity (both
even or both odd). In this case, there is no symmetry around the max-
imum and the maximum can't be found via independent scans of the
parameters. Parameters with the same parity can compensate for each
other such that a positive value for one combined with a negative value
for another yields an SHG intensity close to the maximum. This prop-
erty of the fitness landscape may give an optimization algorithm diffi-
culty to converge on the optimum, as an error in one parameter can be
masked by an other parameter. Furthermore, close inspection of the
landscapes reveals that there is a considerable non-linear shear in the
landscape. A convex projection with principle axis parallel to the pa-
rameter is shear as if two oppositely directed forces are pulling on the
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Figure 3.9: 2-dimensional maps of the SHG intensity for combinations of poly-
nomial phase orders with the same parity. The maps are asymmetric around
the optimum, such that this optimum cannot be found by one dimensional
scans of the parameters. An error in one parameter is compensated by an error
in another parameter.

image along opposite sides. In a non-linear shear the displacement of
the image is a non-linear function from one side of the image to the
other A landscape with non-linear shear will lengthen the search path
followed by an algorithm and increase the computation or measure-
ment time. For example a steepest decent algorithm has to follow a
curved path on such a landscape. For each linear section along this
path the algorithm has to determine the local gradient, a computation-
ally costly procedure.

3.4.1 Constructing a basis set

We will choose a landscape with a more convex shape to find the op-
timum more easily, either via one dimensional scans, or via the use of
a search algorithm. We will start by choosing a better 2" order versus
4™ order landscape and then look at the consequences for the other
landscapes. First, we correct the non-linear shear via the introduction
of a linear shear. Then we will rotate the basis to have the principle
axis of the landscape parallel to the basis functions. Figures 3.10a-e
show the effect of changing the 4™ order basis function by subtracting
increasing amounts of the 2" order basis function. At figure 3.10e the
amount of twisted contours in the landscape is greatly reduced and a
landscape with minimum non-linear shear is found. The shape of the
maximum is still at an angle with the basis functions. We correct this
tilt by another linear shear; we change the 2@ order basis function by
subtracting the 4™ order function. The result of this rotation is shown
in Figure 3.10f. Finally we rescale the new 4™ order basis function by a
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Figure 3.10: A new 2™ order versus 4™ order landscape is created by using
a combination of the two basis functions. First, an increasing amount of 2™
order is subtracted from the 4™ order (a-e), until a landscape with minimal
non-linear shear is obtained for w* — 0.56w?. This landscape is then rotated by
subtracting the 4" order from the 2 order (w? — 4.96.*, Figure 3.10f). Finally,
the 4 order basis function is scaled by a factor of 0.6 (g).

factor of 0.6 to have a similar steepness along both axis.

By creating the new 2"¢ order versus 4™ order landscape, we have
changed the shapes of other 2-dimensional landscapes that include
these two functions. In Figure 3.11 we compare the original landscapes
(top) with the result of the new basis set (bottom) for these landscapes.
The result of the modified basis also turns out favorably for the 4™ or-
der versus 3 order landscape, because a shape with convex contour
lines is produced. The 2" order versus 3' order landscape has qual-
itatively not changed as a result of the correction. Overall the proper-
ties of the landscape have improved in convexity, orthogonality and a
reduced non-linear shear. The procedure can be repeated to include
higher order terms if required.
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Figure 3.11: The original landscapes (top) and the landscapes as a result of
the correction of the 2" order versus 4™ order landscape (bottom). In addition
to the landscape that was worked on, also the 4™ order versus 3™ order land-
scape was improved, while the 2 order versus 3* order landscape has similar
properties as the original landscape.

3.4.2 Conclusion

A pseudo-orthogonal basis set has been determined for the optimiza-
tion of the SHG. Even though the underlying process is non-linear and
has no usable linear operator approximation'®, a basis set exists that
produces a landscape with convex contour lines and independent pa-
rameters around the optimum. Using this basis set in an optimization
will result in a faster and more reliable convergence on the global opti-
mum.



Chapter 4

SIMULATION OF LIGHT ON
PLANAR METAL
NANOSTRUCTURES

In this chapter, a simulation method for planar metal nanos-
tructures is introduced. We test this method and apply it to
random metal nanostructures. The fill ratio of the metal is
varied and it is found that at the percolation threshold the
structure generates the best response to have selective local
excitation. Finally, the chirp scan method developed in the
previous chapter is applied to a percolation structure.
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4.1 Planar metal nanostructures

Metal nanostructures strongly interact with optical radiation°. We
will study this interaction on ultrafast time-scales3! and its depen-
dence on the shape of the metal structure. The possible shapes of a
structure are infinite. For practical applications two constraints have
to be taken into account. First, it has to be possible to create the
structure and second, one has to be able to perform an experiment
on the structure. Mainly for the first reason pseudo-two-dimensional
structures are popular. Borrowing techniques from the semiconductor
industry, structures in a plane can be easily created with a high
resolution. In our experiments we also use structure fabricated via
these techniques (electron-beam or focused ion-beam lithography).
To simulate the electric field on these planar metal nanostructures,
we consider them as two-dimensional electrical networks®~*. The
simulation method is described in detail in the following section.

4.2 Simulation method

We have simulated the interaction of light with metal nanostructures
in the quasi-static limit. In this limit the retardation effects of optical
waves are neglected, assuming the structure is smaller than a wave-
length®. We have modeled the structure as an electrical network on
a square lattice. The metal was mimicked by elements with complex
conductivity derived from a Drude fit to the response of the bulk metal.
As these lossy elements have mostly resistive properties, they are rep-
resented by resistors in Figure 4.1. The gaps in the metal structure were
modeled with capacitors with complex conductivity derived from the
permittivity of the substrate. At each lattice site in the network the cur-
rent is conserved (Kirchhoff's current law). Imposing this condition on
each site leads to the following equation:

ZUU(@‘ —¢j+ Ei;) =0 (4.1)
J

Where o;; represents the conductivity between nodes ¢ and j, ¢; is the
electrostatic potential at node ¢ and E;; is the externally applied field
across the connection between i and j. The equation can be rearranged
to a matrix equation by taking the external field to the other side of the
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Figure 4.1: Electrical network mimicking a planar metal structure. Periodic
boundary conditions where used in the simulations.

equals sign.

H;;V; = F, (4.2)

Here H;; is an N? « N2 matrix, for a structure size of N2 nodes, and V
are the electric potentials at each lattice site. The matrix equation can
in principle be solved via a Gaussian elimination method. However,
we have solved the equation in a slightly more efficient way by taking
into account the structure of H3°. This matrix is very sparse, because
sites are only connected to their neighbours and thus conductivity to
all other sites is zero. Only some blocks of H are non-zero (dashed
squares in Figure 4.2). The elimination process only needs to work on
these blocks, effectively reducing the matrix size from N2 « N2 to 3N
NZ2.

To simulate excitation by a short pulse, we have to consider the
range of frequencies that constitute the pulse. We simulated the re-
sponse to such pulses by adding up the individual responses of the
nanostructure to all frequencies contained in the pulse. To calculate
the response at a single frequency, the matrix H is constructed with
the conductivity of the metal at this specific frequency and the system
of equations is subsequently solved. The effect of pulse shaping can
be efficiently studied using this approach. The settings of the pulse
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™

Figure 4.2: Map of the non-zero elements in the Kirchhoff matrix for a 10 by 10
grid. The Block Elimination method works only on the marked squares.

shaper (phase and amplitude) are simply multiplied with the (com-
plex) responses at each frequency before adding them up. We will use
this approach to calculate the local response on metal nanostructures
when illuminated by phase-shaped pulses.

4.3 Small metal particles

Before continuing with complex nanostructures, we first test our
simulation method on a case that has an analytic solution: a sub-
wavelength particle. For particles much smaller than the wavelength
of light, the quasi-static limit applies, i.e. the field can be considered
constant across the particle. In this limit the polarizability of a metal
sphere has an analytic solution that can be found via Mie theory¥.

Em — &d
o = 4’/T€0V U

—_— 4.3
2eq+ Em (4.3)

In this equation, « is the polarizability, V is the volume of the particle
and ¢, and ¢, are the dielectric constants of the metal and the sur-
rounding dielectric.

In the optical regime, the dielectric constant of a metal depends
strongly on the frequency of the light. Figure 4.3 shows the real and
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Figure 4.3: Real and imaginary part of the dielectric constant of bulk gold
(circles) and a fit to the data points according to the Drude model (solid lines).
The deviation for energies above 2 eV is due to the excitation of an inter-band
transition, causing an increased damping.

imaginary part of the measured dielectric constant of bulk gold 3. The
solid lines are a fit to the data using the Drude model®. This model
works well for energies below 2 eV, but breaks down at higher energies
due to the excitation of the tail of an interband transition. Energy is
lost due to this excitation, causing an increase in the damping rate.
We have limited our experiments to the range where the Drude model
works well and therefore use this model in the simulations.

To model a small spherical particle in a surrounding dielectric, we
take the grid-points within a sphere on a square lattice and intercon-
nect these points via resistors. The other lattice points are connected
to their neighbours via a capacitor. We calculated the total field in-
tensity on this structure for a range of incident frequencies. The result
has a large peak around 520 nm with some smaller peaks at shorter
wavelengths (Figure 4.4). We can compare this result with the analyti-
cal expression given by equation 4.3. Using this expression, we obtain
a single peak that coincides with the large peak from the simulation
(black line in Figure 4.4). The deviation at shorter wavelength is due to
the shape of the particle in the simulation. On a square grid the sphere
is only approximated and higher order modes exist on this particle.
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Figure 4.4: The field enhancement for a small spherical gold particle using
the analytical expression (black) and the simulation (grey). A good agreement
is found for the main resonance. The deviation at shorter wavelength is due
to the shape of the particle in the simulation. The spherical shape is approxi-
mated on a square grid.

4.4 Percolation structures

Random metal-dielectric composites are an area of active study“°. The
rough structures caused by the random positioning of materials cause
strong field enhancements. These strong fields make the structures
useful for non-linear optics and non-linear spectroscopies. The perco-
lation threshold seems to play an important role in the distribution of
the field intensities on a structure®l.

Starting from a dielectric substrate and adding small amounts of
a metal, the metal first forms disconnected islands. As the amount of
metal is increased, at some point the individual islands start to con-
nect. The amount of metal required to just reach a state were all the
metal islands are connected is called the percolation threshold. In this
section we study the properties of a percolation structure when illumi-
nated with phase shaped pulses.

4.4.1 Spatial phase correlation

We would like to selectively excite specific positions on the structure
using shaped pulses. For this purpose we can apply the principle of



SECTION 4.4. PERCOLATION STRUCTURES

Phase correlation

Figure 4.5: The spatial phase correlation function (bottom) for five structures
with increasing gold concentration (top). The correlation function drops the
most for a structure with a gold concentration of 0.5, i.e. at the percolation
threshold.

time-reversal“>*3. The position we would like to excite has a certain
impulse response. If we excite the structure with the time-reversed im-
pulse response, the selected position will experience a short intense
field that is transform-limited. A non-linear process that is a small per-
turbation to the otherwise linear system, such as two-photon absorp-
tion, is sensitive to the peak intensity of the field and will be maximal
when the local field is transform-limited.

To selectively excite different positions, they need to have a differ-
ent impulse response. We tested how the local response correlates on a
few random structures with different gold concentrations (Figure 4.5).
Experimentally, we can not create the true time-reversed response, as
we are limited by the input laser spectrum. Under this constraint, a
non-linear process is maximized when just the phase of the response
is inverted and the amplitude is kept constant.

We will determine how selective the excitation is, when we pick
a position ry and illuminate the sample with the spectral phase
—p(w,r = 19), i.e. the inverted spectral phase of the local response
at ro. We calculate the efficiency of the excitation of a second-order
non-linear process at each position, relative to the maximum possible
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Figure 4.6: The shift of the chirp scan peak in units of the non-resonant width
of the peak. Large shifts are visible, both to the left and right.

excitation of this process at the same position.

12 (Ta _¢(wa r= TO))> ) (44)

C(lr —mol) = < I (r, —g(w,r = 1))

In this equation I (r, ¢(w, = 7)) means the intensity of the second-
order non-linear response at position » when the structure is excited
with the spectral phase ¢(w, r = r), which is the local phase response
at position r. The average is over all positions, rq. The phase correla-
tion curves for five different structures are shown in Figure 4.5.

In our simulations, we changed the concentration of gold on a di-
electric surface from 0.3 to 0.7. At a concentration below 0.5, the struc-
ture consists of disconnected islands of gold, while at a concentration
higher than 0.5 it contains disconnected holes in a gold layer. Exactly
at a concentration of 0.5, the limit is reached that both materials (gold
and dielectric) can be connected. We see this behaviour mirrored in
the correlation curves in Figure 4.5. The correlation curve for a con-
centration of 0.5 decreases the most, while the other curves level off
at some value. This levelling off is due to the local responses in the
disconnected islands (or holes) being similar.

At the percolation threshold, the local response has the most vari-
ation. Thus, a percolation structure is ideal for the selective excitation
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Figure 4.7: The width of the chirp scan peak relative to the non-resonant
width. Very narrow resonances are present on the structure, which broaden
the chirp scan peak by up to 6 times.
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of different positions on a surface.

4.4.2 chirp scan on a percolation structure

In the previous section we found that the best structure to be con-
trolled via the spectral phase is a percolation structure. We continue to
study the effect of simple shaped pulses on the structure. The percola-
tion structure from the previous section is used (Figure 4.5 top-middle)
and subjected it to a chirp scan. We calculate the second-order field
intensity for a set of pulses with increasing chirp-rate (both negative
and positive). The input spectrum is centered at 675 nm and has a
transform-limited pulse length of 40 fs. The plot of field intensity ver-
sus chirp-rate (or group-delay dispersion) yields a curve with a peak
near the center (see Chapter 3).

Resonances on the structure distort the shape of the chirp scan
curve and move its maximum away from the center. Figure 4.6 shows
the shifts of the maximum relative to the width of the peak. Figure 4.7
shows the width of the peak relative to the width that would be ob-
tained on a non-resonant sample. This Figure shows widths up to six
times wider than the non-resonant case, indicating the presence of nar-
row resonances on the surface. Figures 4.6 and 4.7 show that the local
response on a percolation structure strongly distorts the input pulse
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and that this distortion fluctuates with the position on the surface. The
local response to an external field varies across the surface, which can
be exploited for selective local excitation by tailoring the temporal pro-
file of the illuminating field.



Chapter 5
PHASE CONTROL OVER LOCAL
FIELD INTENSITIES

Nanostructured gold layers show localized field enhance-
ment (‘hot spots') when illuminated with broadband light.
By coating such a film with a fluorescent reporter layer, we
are able to image the local field intensity distribution. We il-
luminated a percolating gold structure with chirped pulses
and scanned the chirp. The local response of the structure
influences where this chirp scan shows a maximum. Since
the maximum depends on the local response, this technique
can be used to selectively excite regions on the surface of the
nanostructure.
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5.1 Introduction

Nanostructured metal films have been widely used in surface en-
hanced spectroscopies such as surface enhanced Raman scattering
(SERS)**. The highly enhanced local fields on such films increase
the Raman intensity by orders of magnitude, pushing the sensitiv-
ity into the single molecule regime“. The intense local fields are
due to localized resonances (‘hot spots') naturally occurring on the
nanostructured metal film“®. To gain more control over the enhance-
ment, nano fabrication techniques have been used to prepare the
surface?’. Controlled fabrication methods have yielded a wide variety
of surface structures, including self-organized nano-particle arrays*“®,
lithographically produced arrays of shaped particles*’, and particles
on top of gold films*°. To complement this approach of passive
control by carefully engineering the structure, active control of the
dynamics of plasmons was proposed®!. By tailoring the properties of
the illuminating light the dynamics of plasmons in a nanostructure
can be influenced to localize in time. To control plasmon dynamics
at ultrafast timescales, spectral shaping of the incident light has to
be used“*?. By combining nanostructures and spectral shaping,
full control over the electric field at the femto-nanoscale can be
achieved®?. Designing fields on this scale allows a nanoscale object
(e.g. a nanocrystal or molecule) to be efficiently coupled to a propa-
gating field, which is useful for a number of devices and the study of
the dynamics of the nano-object itself>*.

Here we investigate experimentally the possibility of control the lo-
cal field on a surface using spectral phase shaping. We have designed
a percolation type structure using elements on the scale of the diffrac-
tion limit (Figure 5.1). The sample consists of randomly positioned cir-
cular gold islands on a dielectric substrate. The average size of the
islands is 200 nm. This scale ensures that different responses of the
structure are separated sufficiently to be distinguished by a conven-
tional microscopy approach. While others have used a photo-electron
emission microscope (PEEM) to detect the local field intensity on metal
nanostructures>8, this technique is only sensitive to the field on the
metal and not on to the field on the dielectric gaps. We will use a re-
porter layer of quantum dots (CdSe/ZnS, Evident Technologies, ED-C11-
TOL-0540) that is deposited on the surface and measure the fluores-
cence from this layer. Assuming we obtain an even coverage of the
surface by the quantum dots, we can detect the field intensity on the



SECTION 5.1. INTRODUCTION

Figure 5.1: Sample of randomly placed gold islands imaged in transmission
through the 100x 1.4 NA objective lens. The gold islands are visible in black.

glass in between the gold and on top of the gold. By using this ap-
proach, which relies on light microscopy, we suffer a loss in resolution
compared to PEEM (~40 nm for PEEM versus ~250 nm for our optical
detection method).

In a percolation structure, hot spots occur easily and over a wide
spectral range®®. On a random structure the local geometry (thus re-
sponse) is different at each position of the sample. By using an excita-
tion pulse that is tailored to a specific response, energy can be directed
at the corresponding position on the sample. The principle of time
reversal can be used to address a region on the surface“>* (see also
Chapter 4). By exciting the sample with the time-reversed response of
this region, that location receives the maximum peak intensity.

We detect the local intensity by coating the structure with a reporter
layer of quantum dots'® and image fluorescence from this layer. We
have performed scans of the linear chirp on the pulse and measure
the fluorescence intensity in response to these pulse shapes. We de-
termine where in the scan a maximum is reached for each position on
the sample. The results show that different positions on the sample
can be addressed with different linearly chirped pulse. In contrast, the
hotspots, positions with a high fluorescence intensity, all give a similar
response to the chirped pulses and can not be individually addressed
in this way.
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Figure 5.2: Absorption (full black) and emission (dashed) spectra of the quan-
tum dots. The laser spectrum (shaded) and the optical density of the filters
used on the microscope (gray). The laser has a longer wavelength than the ab-
sorbtion of the quantum dots, such that two photon are required to excite the
dots. The optical filter block the laser light and only pass the fluorescence from
the quantum dots.

5.2 Experimental

We fabricated a nanostructured gold film using electron beam litho-
graphy. The design of the structure was made by randomly positioning
circular islands (diameter 200 nm) within the write area. The density
of the islands is such that an approximately 50% coverage by gold is
achieved. After writing this design in a PMMA film, the film was de-
veloped and a gold layer of 40 nm thickness was deposited. A lift-off
process dissolved the remaining PMMA producing the final gold struc-
ture.

The sample was dip-coated in a dilute solution of quantum dots
(emission peak at 540 nm) in toluene. The quantum dots form a re-
porter layer that visualizes local field intensities on the surface. A
white light transmission image of the structure is shown in Figure 5.1.
The experiments were performed with 35 fs laser pulses from a non-
collinear optical parametric amplifier (NOPA) pumped by an amplified
Ti:Sa system (Clark-MXR CPA 2001). The excitation pulses were cen-
tered at a wavelength of 685 nm, far from the linear absorption of the
quantum dots (Figure 5.2). Therefore, excitation of the quantum dots
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takes two photons and has a quadratic intensity dependence, making
our technique sensitive to the peak-power of the response. The re-
sponse of the quantum dots on a bare substrate to several pulse shapes
was compared to the amount of second harmonic generated (SHG) in a
BBO crystal. No deviations between the SHG light and fluorescence in-
tensities were found, indicating that the two-photon absorption cross-
section can be considered constant within the bandwidth of the pulses.
The non-linear intensity dependence of the fluorescence is required to
see any effect of phase-only shaping on the hot spot intensity. Because
two-photon absorption scales with the peak intensity, the fluorescence
signal of a hot spot is a measure of how the response is localized in
time at that position.

The quantum dot coated structure was placed on a microscope and
imaged on an EMCCD camera through a 1.4 NA oil immersion objec-
tive lens. A part of the structure was illuminated with the laser light
by weakly focusing the laser on the structure. The fluorescence was
detected through a set of filters that blocked all of the scattered laser
light (Figure 5.2).

The laser pulses were passed through a 4-f pulse shaper with a pro-
grammable liquid crystal mask (CRI SLM-640). With this mask, an ar-
bitrary spectral phase can be programmed on the excitation pulses.
Before the experiments, the output pulses were compressed by itera-
tively finding the phase mask that maximized the amount of second-
harmonic generated in a BBO crystal®°. This phase mask was used as
a background phase in the experiments. By applying a quadratic phase
profile one of the simplest shaped pulses is produced, a chirped pulse.
This pulse shape can easily be synthesized by sending a pulse through
a dispersive medium. In the experiment, we scanned the chirp-rate
from 2000 fs? to +2000 fs? in 64 steps. The pulse length in this scan
went from 200 fs to the transform-limited 35 fs back to a 200 fs long
pulse. For each pulse shape the image was integrated for 100 seconds
on the camera. After each two pulses the transform-limited pulse was
measured again to check if the quantum dots were bleaching.
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Figure 5.3: Two-photon excited fluorescence intensity from the percolation
structure, showing the appearance of hotspots over a large area. The scale
bar has a length of 10 ym.

5.3 Results

A typical image of the fluorescence intensity is

shown in Figure 5.3. It is clear from this image that localized
hotspots are generated on this random structure. The hotspots are
all very similar in intensity, which is surprising compared to what
is predicted by theory>* and our simulations. The prediction is that
the local intensity on a percolation type surface has a log-normal
distribution. A spatial hole burning experiment on a SERS substrate
showed a power law distribution of intensities®!. The actual hotspots
on the structure can be much smaller than the resolution they are
detected at. For this reason their intensity is spread over a larger area,
which may make their intensity to appear much more uniform.

It was not possible to reach a sufficient signal to noise ratio in a rea-
sonable amount of time with the focus size used in Figure 5.3. There-
fore, we used a tighter focus to do the chirp scan. Figure 5.4 shows
the fluorescence when a smaller focus is used. Some hotspots are still
visible. The chirp scan produces a similar image for each pulse shape.
If we pick a position on the image and take the intensity from each
of the stack of images measured with a different chirp, we obtain a
chirp scan curve as was found in Chapter 3. The peak of this curve is
somewhere around the transform-limited pulse. For which chirp the
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maximum intensity is reached exactly depends on the local response
of the structure. Figure 5.5 shows the shift of the maximum away from
the transform-limited pulse for the same area of the sample as in Fig-
ure 5.4. This Figure looks similar to Figure 4.6 in Chapter 4, however the
amount of the shift is less than predicted in the simulation. Further-
more, if Figures 5.4 and 5.5 are carefully compared, it shows that there
is no shift for any of the intense peaks. Finally, looking at the width
of the peak produced by the scan, it does not deviate much from the
width obtained with a constant (non-resonant) response. In the sim-
ulation (Figure 4.7) there is strong variation in the width of the peak,
with widths up to six times that of a non-resonant peak.

5.4 Discussion

By applying a reporter layer we have clearly visualized the hotspots
on a random gold nanostructure. We have investigated the influence
of chirped pulses on the fluorescence intensity from the sample. We
have seen that on some positions on the sample the peak of the chirp
scan appears to the left or right of the transform-limited pulse. The
shift makes it possible to individually address different positions on
the surface by exciting with the pulse shape that gives the maximum at
the desired position. The shift is, however, smaller than that predicted
by our simulations. The reason for this discrepancy is that the simula-
tions were performed in the quasi-static limit. In this limit the field is
constant across the structure and does not couple to radiation modes
in the far field. In the experiment, this radiative coupling is present
and all resonances are significantly broadened by radiative damping.

The presence of radiative damping can be seen in the width of the
chirp-scan peaks. The peaks are all close to the width that is obtained
on a non-resonant sample, indicating broad resonances with a short
lifetime. In addition, the points with the highest intensity did not show
a shift in the peak at all, which may just be because these points have
the best overlap with the laser spectrum. Another possibility may be
that there is a correlation between the spectral and the spatial response
of the sample in which the hotspots have a flat spectral response. How-
ever in the simulations such a correlation was not observed.

In Chapter 4 we concluded that the response of a percolation struc-
ture was optimal for the selective excitation of specific regions on the
surface. The experiment shows, however, that the structure at the scale
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Figure 5.4: Fluorescence intensity of hotspots when a smaller focus is used.
The scale bar has a length of 5 um.

we produced it is not ideal. We have seen a weak possibility to excite
some positions selectively, but the high intensity spots can not be used.
To improve the structure, the radiative damping of the modes has to
be controlled. The easiest route is to make the structure smaller, ap-
proaching the quasi-static limit. We have, however, reached the limit
of our detection method using optical detection of the field intensity
on the structure. The afore mentioned PEEM technique could be used
to overcome this limit. Another route is to engineer the structure such
that the modes interfere destructively in the far field by repeating the
same structure with a spacing of one to a few wavelengths. In this way

the modes can be controlled similar to the modes in a photonic crys-
ta] 6263,
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Figure 5.5: Shift from the center of the chirp scan peak. The image shows a
similar pattern as the simulations in the previous Chapter (Figure 4.6)

65



66 CHAPTER 5. PHASE CONTROL OVER LOCAL FIELD INTENSITIES



Chapter 6

SECOND-HARMONIC
GENERATION ON DISORDERED
HOLE ARRAYS

Metal films with periodic sub-wavelength perforations, so-
called hole arrays, exhibit a much larger transmission than
expected from the transmission of a single hole. Plasmonic
resonances between the holes and inside the holes are the
cause of this 'extraordinary transmission'. It was also found
that hole arrays can produce SHG when illuminated with in-
tense laser pulses. We investigate the mechanism behind the
SHG by performing chirp scans. The analysis of the chirp
scans shows a resonance with a long lifetime that is not visi-
ble in the linear transmission spectrum.

67



68

CHAPTER 6. SECOND-HARMONIC GENERATION ON DISORDERED HOLE ARRAYS

6.1 Introduction

Metal films with periodic sub-wavelength perforations, so called 'hole
arrays', are one of the most studied plasmonic structures. The inter-
est in these structures was sparked by the discovery of the 'extraor-
dinary transmission' (EOT) that such arrays exhibit®. For some inci-
dent wavelengths, the transmission through the array is larger than the
open area of the holes. The transmission through a single hole scales
roughly with (r/\)* with r radius of the hole and ) the wavelength of
the light®. Consequently, very little light will come through a single
sub-wavelength hole, which makes the high transmissivity of the hole
array an intriguing phenomenon.

The transmission spectrum of a hole array is highly structured; the
transmission is enhanced for some wavelengths and suppressed for
others. This spectrum also strongly depends on the incident angle of
the light®. The position of the transmission peaks can be engineered
by varying the pitch and hole shape of the arrays®”-%8. For these rea-
sons sub-wavelength hole arrays have application potential as (direc-
tional) filters®.

The EOT is recognized to be caused by surface-plasmon polaritons
(SPPs) that couple between the holes and by localized resonances in-
side the holes’®’!. Resonance conditions exist for both the SPPs and
for the light travelling through individual holes. These two contribu-
tions to the transmission interfere together, resulting in a highly struc-
tured transmission spectrum. Some resonances generate high fields
on the structure, making non-linear effects possible. It was found that
second-harmonic light was generated at hole arrays when illuminated
with intense laser pulses’>73,

Van Nieuwstadt et al.” investigated the role of the shape of the hole
in the SHG process and found a 'magic' hole aspect ratio for which the
SHG efficiency was increased by an order of magnitude. Prangsma et
al.” measured the group-delay for light propagation through the same
hole shapes and found that the SHG intensity correlates with the trans-
mission time of the light. In this Chapter we investigate the resonances
underlying the SHG using the chirp scan method developed in Chap-
ter 3. We study an ordered array and arrays with increasing disorder in
the placement of the holes to understand the influence of the resonant
coupling between the holes by SPPs.
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Figure 6.1: Normalized transmission spectra of the five hole arrays with in-
creasing disorder. The transmission is normalized to the area of the open frac-
tion of the array.

6.2 Samples

Five different hole array samples were produced by Focussed-lon-
Beam milling of square holes in a 200 nm thick gold film on a glass
substrate. The hole size is 195 nm and the average pitch is 400 nm
for all the arrays. The amount of disorder was varied in the arrays by
adding a random offset with 0 to 16 % root-mean-square deviation
from the average pitch to each hole position.

The transmission spectra of the arrays are shown in Figure 6.1 and
SEM images are presented in Figure 6.2. The light transmitted through
an array was compared to the light transmitted through an open square
of the same size as the array. Finally, the transmission was normalized
to the open fraction of the hole array.

A dip associated with resonant plasmonic absorption, called the
Woods anomaly”, is observed at 670 nm. At this wavelength, the spac-
ing of the holes matches the difference in the wavevector of the inci-
dent light and the wavevector of a surface plasmon. The general con-
dition for this phase matching is:

kspp(w) = k) £ nliastice, (6.1)
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SECTION 6.3. EXPERIMENTAL

where ks pp is the wavevector of the surface plasmon, k is the paral-
lel component of the wavevector of the incident light and I';44icc iS @
wavevector of the lattice.

The Woods anomaly is part of an asymmetric lineshape; a Fano
lineshape”. This type of lineshape occurs when a resonance inter-
feres with a continuum. Here, the resonant part is due to plasmonic
coupling between the two sides of the film and the background contin-
uum is direct transmission through the holes’®7%,

The kink in at 600 nm in the spectra of Figure 6.1 is the Rayleigh
anomaly. As in the measurement of these spectra, the light comes from
the air side and exits on the glass side (refractive index 1.5), the first
diffraction order propagates parallel to the sample surface (perpendic-
ular to the propagation direction) for a wavelength of 600 nm. Thus,
if the wavelength is scanned from below 600 nm to above 600 nm, the
first-order diffraction disappears at 600 nm. This change in the diffrac-
tion changes the slope of the transmission curve. The slower modula-
tions around 500-550 nm and the sharp feature at 760 nm are caused
by the highly structured spectrum of the light source (Xenon lamp).

As the disorder is increased, the total transmission decreases, while
also the depth of the dip at the Woods anomaly decreases.

6.3 Experimental

The pulses from a Ti:Sapphire oscillator (Coherent Micra) were used in
the SHG experiments. First the pulses were compressed by a combi-
nation of a prism-compressor and a pulse shaper. An evolutionary al-
gorithm optimized the SHG from a BBO crystal to find the background
phase profile to achieve a transform-limited pulse (see Chapter 3).

The pulses were focussed on the individual samples with a 0.03 nu-
merical aperture (NA) lens. At this NA the trade-off of a uniform cover-
age of the sample and a high intensity is satisfied. In addition, at this
NA the light impinging on the sample has only a small spread in k&,
such that spectral features that are dependent on the incident angle
are not washed out.

The diameter of the focal spot was about 15 ym and the laser inten-
sity was 20 mW, which results in an intensity of 10 kW/cm? on the sam-
ple. A 0.3 NA objective lens was used to collect the second-harmonic
light at the backside of the sample.

Behind the objective lens, a combination of filters and a prism was
used to ensure no fundamental light would reach the detector. The de-
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Figure 6.3: Histogram of photon-counts versus delay with reference. The sig-
nal always arrives at the same time relative to the reference while the dark-
counts are uncorrelated with the laser. Therefore, the amount of measured
dark-counts can be reduced by repetition a factor of time/instrument response
by only integrating the peak corresponding to the signal and discarding all
other counts.

tector was a UV-sensitive PMT (H7421-40, 20% quantum efficiency at
400 nm). Because of the low signal level, the dark-counts of the PMT
cause a considerable contribution to the detected signal. To reduce this
source of noise, the PMT was coupled to a time-correlated single pho-
ton counting system (TCSPC). This system recorded the arrival time of
each count, with a resolution of up to 200 ps, relative to a reference
derived from the laser system. Second-harmonic generation is an in-
stantaneous process, therefore the signal counts should coincide with
the arrival of the laser pulse at the sample. The TCSPC system recorded
a histogram of arrival times for each pulse shape (Figure 6.3). The peak
in this Figure corresponds to the signal counts and is shifted in time
from zero as a result of different delays of the electronic signals due
to the used lengths of cable. The width of the peak is the instrument
response function (IRF) of the system. We processed the histogram by
integrating the peak and discarding all other counts. In this procedure
most dark-counts of the detector are discarded and the number of dark-
counts in the signal is reduced by the ratio IRF/(repetition rate).

A chirp scan of the SHG signal was recorded for each sample by ap-
plying consecutive quadratic phase profiles on the pulse shaper. For
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Figure 6.4: Data from a chirp scan of SHG on a BBO-crystal. For the fit, the
input pulse is assumed to be the measured laser spectrum without any phase
distortion. This assumption lead to a good fit, showing that the input pulse
was indeed transform-limited.

each phase profile, the signal on the PMT was accumulated for 30 sec-
onds. The full scan of the chirp was repeated a total of ten times on
each structure. The scans on different samples were performed be-
tween scans on a BBO crystal. The scans on the BBO crystal were used
as a reference in the analysis and to check if the spectral phase of the
input pulse remained constant during the experiments.

6.4 Results

The average of the scans on the BBO crystal are shown in Figure 6.4. All
produced curves were identical within the shot-noise limit, showing
that the experimental conditions did not change over the course of the
experiment.

The curve was simulated by the method described in Chapter 3, tak-
ing into account the measured laser spectrum. The maximum of the
scan is not at the point where the zero group delay dispersion was ap-
plied on the shaper. Therefore we used the origin as a free parameter
in the fit to the data. With the adjusted origin, a good agreement be-
tween the simulation and data is found. The good agreement shows
that the input pulse had no distortions in the spectral phase beyond
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Figure 6.5: Chirp scan data for the five hole arrays with different amounts of
disorder. The data from the BBO-crystal is plotted in the background (dashed
lines). All the curves show the same features, a broadening and a shift to the
left relative to the BBO peak

a slight second order phase, causing the shift of the origin. We will
use the shifted maximum of the curve to define the zero group delay
dispersion (GDD) point in the analysis of the scans on the hole arrays.

The chirp scans on the hole arrays resulted curve that is distinctly
different from the curve on the BBO crystal (Figure 6.5). The curves are
much wider and the maximum is shifted to a negative GDD. Such be-
haviour can indicate the presence of a resonance on the sample (Chap-
ter 3). As the disorder in the placement of the holes was increased,
these features did not change. Thus, the disorder, at the level it was
introduced in the array, does not seem to influence the process of SHG.

The chirp scan data can be simulated by assuming the presence of
a resonance on the sample, as described in Chapter 3. The position,
width and amplitude of the resonance are the only fit parameters. Us-
ing these parameters an excellent fit to the data is obtained (Figure 6.6).
The resonance that fits the data is blue shifted relative to the laser spec-
trum and very narrow for a resonance on a metal structure (Figure 6.7).
The fit parameters are the center position at 791+3 nm and a lifetime
of 55+16 fs.
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Figure 6.6: Fit to a chirp scan on one hole arrays. The transform-limited in-
put pulse is assumed to be distorted by a resonance on the structure. This
assumption results in a good fit to the data. The scan on the hole array was
scaled down by /2 to better show the difference in center position and width
between the scans.

6.5 Discussion

The chirp-scan curve on the hole arrays are different from the curve on
a BBO crystal. This difference indicates that the SHG is generated in a
resonance on the arrays. The disorder that we introduced in the posi-
tions of the holes did not influence the shape of the chirp scan and the
data from all the arrays can be fit by the same resonance. That spacing
of the holes does not change the signature of the SHG process suggests
that the resonance is predominantly a property of a single hole.

In a preliminary follow-up experiment, the laser spectrum was
shifted to a shorter wavelength and the chirp-scan measurement was
performed again. In this measurement the peak of the chirp scan was
shifted to a positive GDD relative to a scan on a BBO crystal. This
behaviour was expected as now the laser spectrum was blue shifted
compared to the position of the resonance at 791 nm. This follow-up
experiment provides more evidence for the existence of a long-lived
resonance at this position in the spectrum.

The resonance has a long lifetime (55 fs) for a plasmonic structure,
as most (particle) plasmon resonances have sub 20 fs lifetimes. The
lifetime is also much longer than the transmission time through a hole
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Figure 6.7: The resonance that fits the data in Figure 6.6. The resonance is
positioned at the blue side of the laser spectrum (shaded), causing the shift of
the maximum to the left, relative to the BBO curve.

array, which is typically 1-4 fs”8°, The resonance does not appear as
a clear feature in the linear transmission spectrum. Verhagen et al.?
investigated the near-field intensity on hole arrays via up-conversion
measurements. They found that the same resonances on their struc-
ture describe the spectrum of the enhanced near-field and the far-field
transmission. This connection does not seem to hold for the resonance
behind the SHG on our samples. However, the Q-factor of the reso-
nance is about 10, which means that, due to the enhanced near-field,
its contribution to the SHG can be up to 100 times stronger than its
contribution to the linear transmission.



Chapter 7

QUANTUM CONTROL
SPECTROSCOPY OF
SOLVENT-INDUCED
DECOHERENCE

Coherent control has been recognized as a potential spec-
troscopic tool for the study of complex molecular systems.
With this technique, a molecular system is selectively guided
through a potential energy landscape towards a target quan-
tum state by shaped light fields, often employing a closed-
loop learning algorithm. The central idea is that the pulse
shapes corresponding to the highest yield contain spectro-
scopic information concerning the quantum system, yet of-
ten the complexity of these pulses hinders their interpreta-
tion. Further, achieving control requires coherence in the
quantum system under study. In the condensed phase, co-
herence is typically lost rapidly due to fluctuating interac-
tions between the solvated molecule and its surrounding en-
vironment. In this chapter we show how the amount of at-
tainable control on a molecule in solution changes when the
fluctuations of its environment are systematically varied.

A single successful learning curve for optimizing stimulated
emission from the molecule is reapplied for a range of sol-
vents with varying viscosity, revealing a striking trend in the
yield of an optimization that is correlated directly to the de-
coherence time. Our results provide clear evidence that the
environment limits the leverage of control on a molecular
system.
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7.1 Introduction

It has been found surprisingly easy to come up with control fields for a
wide range of systems 2, from simple atomic systems to large bio-mole-
cules. These control fields exert their influence even when the system
is interacting with a fluctuating environment such as a protein or a sol-
vent in which coherence is in general lost rapidly®. However, only in
a few isolated cases the goal of deriving fundamental properties of the
system and the physical mechanism of control has been achieved 84-8¢;
most often the pulse shape is too complex to interpret. This obstacle
hinders the usefulness of coherent control as a research tool and more
progress needs to be made in understanding the basic mechanisms of
control and how these mechanisms apply to a variety of molecular sys-
tems. An important objective is to find 'rules of thumb' for coherent
control, where a given shaped pulse produces a predictable and uni-
versal response. A promising route to the realization of this goal is to
study a set of systems in which some parameter is systematically var-
ied®. Here we take this approach to determine the influence of deco-
herence caused by the environment. By varying the solvent in which a
model quantum system is dissolved, we resolve the impact of the en-
vironment on our ability to control the system. Particularly, we study
how we can manipulate the yield of stimulated emission from a sol-
vated molecule in a range of solvents, thus elucidating their role in the
control.

7.2 Model system

The influence of the solvent on the photo-dynamics of a solvated
molecule is typically observed via a Stokes shift, in which the energy
of the emitting state is lowered relative to the absorption band. The
origin of this effect is the modified electron distribution of the excited
state, which prompts the solvent molecules to reposition. With the
solvent in this new position, the energy of the excited state is lowered,
while the energy of the ground state is raised. Thus relaxation from
the solvated excited state will emit a red-shifted photon compared to
the excitation.

Solvation processes are widely studied using Coumarin dyes®8, as
the electronic structure of these dyes undergoes a strong change when
excited. In non-polar solvents the solvation process is more amenable
to analysis, because the complicating effects of hydrogen bonding and
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Figure 7.1: Molecular structure of Coumarin 6 and its absorption spectrum in
cyclohexane. The laser spectrum (shaded) overlaps with the red wing.

solvent rotation are entirely absent. This simple solvation makes the
dynamics of the solvent independent in the 1st 100 fs time window for
control®. For these two reasons we have used the laser dye Coumarin 6
dissolved in a range of non-polar solvents to study the effect of solva-
tion on coherent control.

A detailed knowledge of the involved photo-physics is necessary to
elucidate the control mechanism. In polar solvents, the amine group
of the molecule is in the plane of the rest of the molecule and is reso-
nant with the 7-system. The two groups are joined by a double bond,
making the structure rigid. In non-polar solvents, the molecule has
lower energy with the bonds around the Nitrogen atom in a pyrami-
dal structure coupled bond to the main molecule via a single bond.
This structure results in a somewhat floppy tail®°. This tail causes the
photo-physics to be more complicated. The motion of this floppy tail
was found to be involved in a radiationless decay channel that com-
petes with fluorescence®!. In all non-polar solvents the fluorescence
quantum yield is ~0.57.
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Figure 7.2: Pump-probe spectrum at 1 ns delay in cyclohexane obtained for
4 selected generations (circled) of the learning curve (inset). The inset shows
the fitness of the optimal pulse shape (red) and the fitness of the transform-
limited pulse (black) for each generation of the optimization. The shaded area
indicates the integrated stimulated emission used as a feedback-signal for the
optimizations. The arrow shows the increase of this area as a result of control.

7.3 Optimization

In an earlier study of coherent control of a solvated laser dye in the
weak field limit®? it was found that the overlap of the laser spectrum
with the red side of the absorption band of the dye is a significant pa-
rameter in the control. The importance of this overlap already suggests
that the solvent plays a significant role in the control mechanism, as
it allows the excitation field to track the change in transition energy in
real time as the solvent rearranges. In this study, in contrast to the pre-
vious work, we keep the excitation spectrum constant and only mod-
ulate the spectral phase. By keeping the amplitude of the excitation
spectrum fixed, we make sure that any control achieved will be due to
coherences. To be able to address the dye in all states during the sol-
vent relaxation, we pump at the red side of the absorption band and
overlap the laser spectrum with the emission band of the dye (Figure
7.1). The optimizations were performed at a moderate laser fluence (1.5
- 10" photons/cm?), but because of the low absorption cross-section
at the laser wavelength, this fluence is still in the linear absorption
regime of the dye (approximately 2 % of the molecules are excited).
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Figure 7.3: Fluence dependence of the fitness value for the transform-limited
(crosses) and optimal pulse shape (triangles).

By exciting in the linear absorption regime, trivial control mechanisms
based on high-order spectral interference are excluded. The control,
if any, will be due to the specific quantum mechanical response of the
solvated molecule.

Excitation pulses were passed through a pulse shaper that modu-
lates the spectral phase using a liquid crystal mask. This mask was
programmed with phases generated by an evolutionary search algo-
rithm (CMA). Each iteration, the algorithm generated 40 pulse shapes
to test in the experiment and used the intensity of stimulated emission
as feedback in a learning loop. This feedback signal was derived from
a transient absorption spectrum probed 1 ns after excitation by inte-
gration of the gray shaded band in Figure 7.2. Probing at such a long
delay ensures complete vibrational relaxation and loss of coherence in
the system. In addition, small shifts of the excitation pulse in time will
not result in a change of the measured signal, because at this long time
delay only the very slow dynamics of the molecule are left over.
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Figure 7.4: A 2-dimensional representation (X-FROG) of the optimal pulse
shape found optimization, showing a down-chirp.

7.4 Results

The search algorithm was setup to find the pulse shape that maximizes
the integrated stimulated emission signal and it typically converged on
a solution in ~ 150 generations (Figure 7.2 inset). The fluence depen-
dence of the measured stimulated emission is shown in Figure 7.3 both
for the transform-limited and the optimal pulse shape. A slight cur-
vature due to saturation effects is seen in the fitness of the transform-
limited pulse, but avoidance of this effect alone can not explain the
large increase in fitness of the optimal pulse.

7.4.1 Potential mechanism

A representation of the optimal pulse shape is shown in Figure 7.4.
The pulse is only twice as long as the transform limited pulse and
has a down-chirp, i.e. the blue side of the spectrum arrives before
the red side. A potential mechanism associated with a down-chirp
is wavepacket localization, in which a linear chirp is matched to the
anharmonicity of a vibrational mode®. However close inspection of
the optimal pulse found here reveals a chirp that is significantly non-
linear, i.e. the chirp-rate at the beginning of the pulse (corresponding
to a second order spectral phase of 340450 fs?) is much higher than at
the end (-13504:300 fs?). A chirp with such a strong high-order spectral
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dispersion does not result in an optimally focussed wavepacket. An
independent optimization, starting from a different random position
in the search space, resulted in the same non-linearly chirped pulse,
indicating the importance of this feature for the mechanism of control.
Futhermore, we could not achieve the same level of control by just
using a linearly chirped pulse*. The amount of control attained by
the shaped pulse is unprecedented at the excitation fluence we used.
In large part the control may be due to the relatively low fluorescence
quantum yield of Coumarin 6 in apolar solvents (0.57). This low yield
is due to a loss-channel associated with a twisting motion of the amine
tail of the molecule®*. A coherent control pathway that avoids this
losschannel, would thereby maximize population in the excited state,
inducing a corresponding increase in the stimulated emission signal.
A nonlinear chirp is typical for a frequency-frequency correlation
function, suggesting that the mechanism is tracking of the transition
frequency. At first sight, such a tracking mechanism may seem
counter-intuitive for the optimization of population in the excited
state; in the high-power limit a pulse with a down-chirp will in general
decrease the population transfer through a pump-dump mechanism
by tracking the wave-packet®7. This effect is indeed observed at
higher pulse energies when the solvent is replaced by the polar ace-
tone (see Figure 7.8). However, in the weak-field limit, applicable to the
apolar solvents, the down-chirped pulse still couples the ground and
excited state over the duration of the pulse. By tracking the change
in transition energy of the solvated system a coherent interaction
can be maintained for the duration of the pulse. Calculations®® and
experiments®® with such chirped pulses show that the result of this
coupling is a strong vibrational coherence in the ground state at
the expense of coherence in the excited state. Furthermore, when
pumping at the red wing of the absorption band, the resulting hot
ground state can be excited to an excited state with lower vibrational
energy (Figure 7.5). A down-chirp at the red side of the spectrum will
in this way slightly increase the population in the excited state while
keeping the vibrational excitation of the molecule suppressed. The
lower vibrational energy of the excited state may concomitantly limit
the amount of internal conversion, because radiationless decay is
often coupled to a higher vibrational mode!®. Hence, suppressing
vibration in the excited state will increase the fluorescence quantum

* A scan of the chirp from -1500 fs? to +1500 fs?> showed a difference of only 4 % in the
stimulated emission signal
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Figure 7.5: Schematic potential energy curves of the planar (dotted) and pyra-
midal structure (solid). The down-chirped pulse coherently suppresses vibra-
tion in the excited state. In Coumarin 6, this vibration can lead to radiation-
less deactivation by (1) rotation of the amine towards an intersection with the
ground state of the twisted planar structure, (2) flipping from the pyramidal to
the planar structure (3) and rotation to the energy minimum in this configura-
tion (4).

yield of the system. This type of control may also be applicable to
other systems in which vibrational redistribution plays an important
role in the photophysics©l,

The path through the energy landscape corresponding to the radi-
ationless deexcitation mechanism is illustrated schematically in Fig-
ure 7.5. In apolar solvents the amine group is in its pyramidal struc-
ture instead of the planar structure in polar solvents. In the excited
state, the amine group can rotate until a point is reached where the
two structures are isoenergetic. At this point, the molecule undergoes
a transition to its planar structure and relaxes to the ground state non-
radiatively via a rotation of the amine. Coupling of this rotation and
a flip-flop motion of the amine tail in Coumarin 120, a closely related
Coumarin, which is also aminated at the 7-position, to a fast nonradia-
tive deexcitation process was found by Pal et al.”*.

The down-chirp on our pulse slightly increases population trans-
fer by excitation from the hot ground state and more importantly sup-
presses vibration in the excited state, which reduces rotation and/or
flipping of the diethylamine tail. By eliminating this loss channel, the
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Figure 7.6: Fluence dependence of the fitness for the transform limited (open
symbols) and optimal pulse (closed symbols) in the linear alkanes (hexane (tri-
angles), octane (squares) and decane (circles)), showing a linear dependence
for both pulse shapes.

excited state population and correspondingly the stimulated emission
signal is increased.

In this description of the mechanism we have detailed the branch-
ing ratio that was controlled. What acts as a 'probe' and colapses the
molecule into the desired state is at present not known. A recent theo-
retical work by Katz at al. 1% suggest that the answer may be the solvent
itself. In this work the authors have created a system with two excited
states that can be controlled with chirped pulses due to coupling to a
bath. They find, however, a more complicate dependence on the de-
phasing time. Initially as the dephasing time is increased, the control
yield increases. Then after a maximum, the yield decreases again. The
maximum was found at a relatively long dephasing time of 276 fs. Our
results are expected to fall on the initial rise of the control yield and
it is unlikely that a solvent can be found to extend the dephasing time
beyond the maximum found. A different model system is required to
test the full range of this theory.
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7.4.2 Solvent dependence

We determined the effect of the solvent by retracing the search-path to
the optimal pulse in one solvent in all other solvents. The best pulse
shape in each generation of the original optimization was saved to be
used in this retracing experiment. Recording all the pulse shapes in the
optimization procedure allows us to check robustness by remeasuring
the optimization curve. Additionally we can test the generality of the
optimization by changing one or more parameters in the experiment
(i.e. laser fluence, solvent). The optimization curve can be viewed as
the path followed by the algorithm through the 'fitness landscape’, a
multi dimensional mountain range of the stimulated emission signal
as a function of the separate control parameters. A successful opti-
mization ends at a peak of this mountain range. Variations in the shape
of the optimization curve indicate that the fitness landscape is different
and thus the underlying physics have changed.

We ran the optimization on Coumarin 6 dissolved in cyclohexane
and repeated the measurement using the recorded pulse shapes with
the other solvents. The tested solvents were a range of linear alkanes
(hexane, octane and decane) and their cyclic counterparts. Repeating
the pulse shapes rather than reoptimizing for every solvent avoids the
possibility of ending up in a different maximum. Consequently, the
optimal results can be compared directly and systematically between
the systems. The applicability of repeating was checked by a second
successful optimization in octane that converged on the same pulse
shape and had the same overall yield as the optimal pulse from the
cyclohexane optimization.

The remeasured curves were undersampled by only using the
pulse shape from every 8th generation.Undersampling shortens the
experimental time, reducing the effect of long-term fluctuations in
laser power and additionally allows for a longer integration time,
resulting in a clearer picture of the shape of the optimization curve.
Multiple runs at varying laser intensities were performed to check
the power dependence of the optimization result. The ratio of the
stimulated emission signals of the transform-limited and optimal
pulse was found to be identical at all laser powers (Figure 7.6), proving
that the experiments were carried out in the linear absorption regime.

The curves for the repeated optimizations in the different solvents
were normalized to the signal of the transform-limited pulse, allowing
for direct comparison (Figure 7.7). The curves were fit with a polyno-
mial function that maps out the ridges and valleys in the traversed
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Figure 7.7: Normalized optimization curves for the three linear solvents (a)
hexane (triangles), octane (squares) and decane (circles) and the cyclic sol-
vents (b) cyclohexane (triangles), cyclooctane (squares) and cyclodecane (cir-
cles). The dashed line in all six curves is the same polynomial function only
scaled in amplitude.

fitness landscape. Remarkably, the same polynomial shape fits all
curves; only a scaling factor is adjusted. Hence, we conclude that the
fitness landscapes of the dye in the different solvents are comparable
in topology. The magnitude of the scaling factor shows how well
the system can be controlled in the corresponding solvent, with the
pulse shape from the cyclohexane optimization. We indeed see that
the ability to control the intensity of the stimulated emission strongly
depends on the environment.

For comparison the fitness curves where also remeasured in a com-
pletely different solvent, namely acetone (Figure 7.8). In this solvent,
the absorption is red-shifted causing an increase in the overlap of the
laser spectrum with the absorption band. The increased overlap al-
lowed us to reach the non-linear regime in the absorption at pulse en-
ergies still linear for the apolar solvents.

The effect of the optimal pulse in the apolar solvents is reversed in
acetone. At low pulse energy, the pulse has no significant effect, but
as the energy is increased the excitation efficiency is decreased. This
effect is expected of a down-chirped pulse at high excitation fluence,
because this pulse shape enables a pump-dump process.

In addition to repeating the cyclohexane optimization, we ran an
independent optimization in acetone at intermediate pulse energy. The
stimulated emission was increased by only a few percent. Further-
more, the optimal pulse was highly fragmented and intangible to fur-
ther analysis. Therefore we'll analyse only the results in the apolar sol-
vents, in which the observed optimization is linear in pulse energy.
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Figure 7.8: Normalized fitness curves of the pulse shapes from the optimiza-
tion in cyclohexane, remeasured in acetone at varying excitation powers. The
stimulated emission is reduced instead of enhanced in this solvent, especially
at increasing excitation pulse energy.

The order in which the fitnesses corresponding to the pulse shapes
were remeasured does not have a clear physical interpretation, as it de-
pends on the specifics of the search algorithm. Therefore, we plot the
normalized fitnesses obtained for each solvent versus the average fit-
ness over all solvents, as measured per pulse shape (Figure 79). The
points sorted in this way now fall on a straight line, revealing a strong
correlation between the fitnesses in the different solvents. From this
correlation we conclude that the fitness landscapes of the dye in the
different solvents are comparable in topology. The slope of the linear
fit is an indication of how well the system can be controlled in the cor-
responding solvent. The end-point of the linear fits to the data in Figure
7.9 we call the optimization yield. The errors on these values were esti-
mated using a resampling procedure*. The enhancement of the stimu-
lated emission compared to excitation with the transform limited pulse
varies from 40% in decane to 140% in hexane and from 20% in cyclode-
cane to 55% in cyclohexane.

The fluorescence quantum yield and lifetime of Coumarin 6 is not
significantly different in the solvents used. The scaling of the optimiza-
tion curves is attributed to the different rate at which coherence is lost
in the system. Although with coherent control long-lasting coherences

* The errors on the slopes of the linear fits were determined via bootstrapping by re-
sampling residuals. The errorbars in Figure 7.10 represent the 2o confidence interval
on the end-points of the fit, following from this procedure.
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Figure 7.9: The fitness values plotted against the average fitness with the cor-
responding pulse shapes, showing a strong correlation between the solvents.

can sometimes be found, we assume for simplicity that those coher-
ences will also depend on solvent fluctuations in the same manner as
the electronic dephasing time. Taking this limit of fast fluctuations is
a reasonable assumption as a large solvent effect is seen whereas the
optimal pulse is relatively short, suggesting a short dephasing time. A
viscoelastic model %3, which captures both the inertial and diffusive re-
sponse of the solvent, predicts that in this limit of fast fluctuations, the
dephasing time is inversely proportional to the solvent viscosity 1%* (n).
When we plot the optimization yield versus the inverse of the viscosity
we find a linear dependence for the linear solvent molecules (Figure
7.10). The cyclic solvents have a different vibrational frequency spec-
trum, which modifies the dephasing time. This difference means that
they are not expected to fall on the same line as the linear solvents, but
should nonetheless have a similar dependence on viscosity. The opti-
mization yields indeed show this trend. The viscosity dependence of
the optimization yield strongly suggests that decoherence is the funda-
mental limiting factor in the extent of control.
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Figure 7.10: The optimization yield relative to the transform limited pulse
versus the inverse solvent viscosity (). For the linear solvents the optimiza-
tion yield is inversely proportional to the viscosity. For the cyclic solvents
lower-frequency vibrational modes come into play, but a similar dependence
is found.

7.5 Conclusion

We have found that, in the weak-field limit, the optimal excitation
pulse for Coumarin 6 in non-polar solvents is a down-chirped one. This
finding is surprising as down-chirped pulses are generally expected to
limit the excitation of the molecule via a pump-dump process. When
the solvent was replaced with the polar solvent acetone, the expected
minimization of the stimulated emission signal was observed.

We proposed a mechanism for the branching ratio in the control of
Coumarin 6 in non-polar solvents, based on coherent suppression of
vibration in the excited state, leading to an increased quantum yield.
More importantly, by systematically varying the solvent we found that
the loss of coherence due to solvent fluctuations, even on the very short
time scale of the optimal pulse, is limiting the action of the pulse on the
molecule. These results are supported by a recent theoretical study %,
in which the decoherence by the environment plays an active role in
the control mechanism, giving a clue to what act as the 'probe' in weak-
field coherent control.

These findings show that a fluctuating environment may be key to
coherent control in the weak-field limit. We have found that by engi-
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neering the fluctuations, for example via a judicious choice of solvent,
the yield of control may be varied enormously.
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SUMMARY

This thesis is about coherent control on disordered samples. Coherent
control is the steering of processes with light of different frequencies.
The relative phases between the frequencies determines in which di-
rection the process is steered. When many frequencies are used, the
light composes a short pulse. Changing the relative phases of the fre-
quencies changes the shape of this pulse. We used such shaped pulses
to guide processes on our samples. Pulse shaping and the different
disordered samples are introduced in chapter 1, after which chapter 2
proceeds with the experimental details behind our studies.

To perform a measurement with a shaped pulse, a nonlinear pro-
cess is required. Second-harmonic generation (SHG) is one of the most
straightforward nonlinear processes and plays an important role in this
thesis. In chapter 3 theory of SHG is developed. Specifically, we deter-
mine how to calculate the SHG intensity from shaped pulses on sam-
ples with a resonance near the frequency of the illuminating light. We
show that two mechanisms that broaden the line width of a resonance
can not be distinguished by measuring the SHG signal. In the absence
of resonances the maximum SHG intensity is produced by a transform-
limited pulse. This pulse shape is required for many nonlinear optical
spectroscopies and maximizing the SHG intensity is a useful method
to obtain it. For such optimizations, algorithms are used that tune the
coefficients for basis functions of the spectral phase. We looked at the
fitness landscape of the SHG when a common basis set is used and by
inspecting projections of the landscape we constructed a more efficient
basis set, that will make optimizations of SHG more efficient.

In chapter 4 we describe simulations of the electric field in a ran-
dom electrical network. The electrical network serves as a model for
a film of randomly positioned gold islands, which we studied as re-
ported in chapter 5. The simulations show that a metal density close
to the percolation threshold results in a structure that has favourable
properties for selective local excitation of the surface.

In chapter 5 we proceed with this experiment on a random gold
structure. The structure was coated with a layer of quantum dots. We
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imaged the fluorescence from this layer with a microscope and in this
way were able to detect the local field intensities on the surface. We
found that some control on the field intensity is possible, but the effect
is minimal compared to the results of the simulations. The reason for
this discrepancy is in the radiative damping of the oscillations, which
was not included in the simulation. The radiative damping of plas-
mons causes dephasing within ~20 fs, making control with shaped
pulses difficult.

We further studied SHG from arrays of sub-wavelength holes in a
gold film. The results of this study are presented in chapter 6. The
amount of disorder in the positions of the holes in the arrays was var-
ied. We found that the the SHG is produced in a resonance with a long
lifetime of 55 fs. This lifetime is longer than most plasmonic resonances
and shows that the effect of radiative damping is decreased on this
structure. Furthermore, the SHG from all the structures has the same
features. The disorder does not influence the SHG and the same reso-
nance was found on all structures. Thus, it is likely that the resonance
is a property of a single hole.

Finally, we studied the coherent control of a dye in solution. Here
the disorder is not in the structure, but in the transition frequency of
the dye. Due to the interaction of the dye with the solvent, this fre-
quency is constantly changing. These changes cause coherence to be
lost in the system in a short time. We ran a closed-loop optimization to
maximize the stimulated emission from the dye. All the pulse shapes
tried in the optimization were saved and subsequently tried with the
dye dissolved in other solvents. We found that the yield of the opti-
mization varied greatly with the used solvent. These results formed a
trend with the viscosity of the particular solvents. The viscosity can be
related directly to the dephasing time, the time in which coherence is
lost in the system. The trend of the optimization yield versus the vis-
cosity shows directly that the fluctuations of the solvent are limiting
the coherent control of the dye.



SAMENVATTING

Dit proefschrift gaat over coherente sturing op wanordelijke samples.
Coherente sturing is het besturen van processen met licht van verschil-
lende frequenties. De relatieve fase tussen de frequenties bepaald in
welke richting het proces gestuurd wordt. Als er veel frequenties ge-
bruikt worden, dan vormt het licht een korte puls. Door de relatieve
fase tussen de frequenties in de puls te veranderen wordt de vorm van
de puls beinvloed. Wij hebben zulke vervormde pulsen gebruikt om
processen op onze samples te besturen. Het vervormen van pulsen
en de verschillende wanordelijke samples worden geintroduceerd in
hoofdstuk 1, waarna in hoofdstuk 2 de details van de experimenten
volgen.

Om een meting met een gevormde puls te kunnen doen, is een niet-
lineair proces nodig. Tweede-harmonische generatie (SHG) is een een-
voudig niet-lineair proces and speelt een grote rol in dit proefschrift.
In hoofdstuk 3 wordt theorie van SHG ontwikkeld. Specifiek, bepalen
we hoe we de SHG intensiteit van gevormde pulsen kunnen bereke-
nen als ze gebruikt worden op samples met een resonantie dichtbij de
frequentie van het gebruikte licht. We laten zien dat twee processen
die een resonantie verbreden, niet te onderscheiden zijn door middel
van metingen van SHG. Als er geen resonanties zijn, dan geeft een
transformatie-gelimiteerde puls de maximale SHG intensiteit. Deze
puls-vorm is nodig voor vele niet-lineair optische spectroscopien en de
maximalisatie van de SHG intensiteit is een goede manier om deze puls
te vinden. Bij zulke optimalisaties wordt een algoritme gebruikt dat de
coefficienten voor basis functies van de spectrale fase beinvloed. Wij
hebben het fitness landschap van SHG bekeken, wanneer een veel ge-
bruikte basis set wordt toegepast. Door projecties van het landschap
te bestuderen hebben we een nieuwe basis set kunnen construeren dat
de optimalisatie van SHG efficienter maakt.

In hoofdstuk 4 beschrijven we simulaties van het elektrisch veld in
wanordelijk elektrisch netwerk. Dit netwerk is een model voor een laag
met daarin goud deeltjes op random posities geplaatst. De simulaties
laten zien dat wanneer de dichtheid van het metaal de percolatie grens
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bereikt, de structuur de beste eigenschappen heeft om selectief geexci-
teerd te kunnen worden.

In hoofdstuk 5 gaan we verder met het experiment op de random
goud-laag. Een laag van quantum dots werd op het sample gelegd.
De fluorescentie van de quantum dots werd door middel van een mi-
croscoop afgebeeld waardoor we de locale elektrische velden op het
sample konden zien. De experimenten wezen uit dat er enige mate
van controle over deze velden mogelijk is, maar dat vergeleken met
de simulaties dit effect minimaal is. Dit verschil komt door de radi-
atieve demping van de oscillaties op het sample, die niet in de sim-
ulaties waren meegenomen. De radiatieve demping zorgt ervoor dat
oscillaties binnen 20 fs uitdempen, wat sturing met gevormde pulsen
moeilijk maakt.

Verder bestudeerden we SHG van roosters met kleine gaatjes in een
gouden film. De resultaten hiervan staan in hoofdstuk 6. De hoeveel-
heid wanorde in de posities van de gaten werd gevarieerd. We ontdek-
ten dat de SHG geproduceerd wordt in een resonantie met een lange
levensduur, 55 fs. Deze levensduur is langer dan de meeste plasmonis-
che resonanties en geeft aan dat radiatieve demping op deze structuur
verminderd is. Verder zag het SHG signaal van alle structuren er het-
zelfde uit. De wanorde had geen invloed en dezelfde resonantie werd
op elke structuur gevonden. Hieruit blijkt dat de resonantie waarschi-
jnlijk voortkomt uit de eigenschappen van individuele gaten.

Als laatste bestudeerden we de coherente sturing van een kleurstof-
molecuul in een oplosmiddel. In dit sample zit de wanorde niet in
de structuur, maar in de transitie frequentie van het molecuul.
Door de interactie van het molecuul met het oplosmiddel, is deze
frequentie voortdurend anders. Deze veranderingen zorgen ervoor
dat de coherentie in het systeem snel verloren gaat. We deden een
optimalisatie om de gestimuleerde emissie van het molecuul zo groot
mogelijk te maken. Alle pulsvormen die in de optimalisatie gebruikt
werden, werden opgeslagen. Vervolgens werden de pulsen opnieuw
geprobeerd, maar nu met het molecuul in een ander oplosmiddel. Het
bleek dat de verbetering die de optimalisatie opleverde sterk afhing
van het gebruikte oplosmiddel. Onze resultaten vormen een trend
met de viscositeit van de oplosmiddelen. De viscositeit kunnen we
direct relateren aan de defaserings tijd, de tijd waarin de coherentie
verloren gaat. Dus, de trend van de optimalisaties met de viscositeit
laat direct zien dat de fluctuaties van het oplosmiddel de coherente
sturing limiteren.
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